实验项目三 用蛮力法动态规划法和贪心法求解背包问题.doc

实验项目三 用蛮力法动态规划法和贪心法求解背包问题.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实验项目三 用蛮力法动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn}的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i或者被装入背包,或者不被装入背包,设xi表示物品i装入背包的情况,则当xi=0时,表示物品i没有被装入背包,xi=1时,表示物品i被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X=(x1, x2, …, xn)。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法: void force(int a[16][4])//蛮力法产生4个物品的子集 { int i,j; int n=16; int m,t; for(i=0;i16;i++) { t=i; for(j=3;j=0;j--) { m=t%2; a[i][j]=m; t=t/2; } } for(i=0;i16;i++)//输出保存子集的二维数组 { for(j=0;j4;j++) { printf(%d ,a[i][j]); } printf(\n); } } 以下要依次判断每个子集的可行性,找出可行解: void panduan(int a[][4],int cw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0 { int i,j; int n=16; int sw,sv; for(i=0;i16;i++) { sw=0; sv=0; for(j=0;j4;j++) { sw=sw+wp[j].w*a[i][j]; sv=sv+wp[j].v*a[i][j]; } if(sw=c) cw[i]=sv; else cw[i]=0; } 在可行解中找出最优解,即找出可行解中满足目标函数的最优解。以下是找出最优解的算法: int findmax(int x[16][4],int cv[])//可行解保存在数组cv中,最优解就是x数组中某行的元素值相加得到的最大值 { int max; int i,j; max=0; for(i=0;i16;i++) { if(cv[i]max) {max=cv[i]; j=i; } } printf(\n最好的组合方案是:); for(i=0;i4;i++) { printf(%d ,x[j][i]); } return max; } 。 2、动态规划法 动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。 动态规划法设计算法一般分成三个阶段: (1)分段:将原问题分解为若干个相互重叠的子问题; (2)分析:分析问题是否满足最优性原理,找出动态规划函数的递推式; (3)求解:利用递推式自底向上计算,实现动态规划过程。 0/1背包问题可以看作是决策一个序列(x1, x2, …, xn),对任一变量xi的决策是决定xi=1还是xi=0。在对xi-1决策

文档评论(0)

shenlan118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档