- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
风电场分群无功控制的基本思路-电测与仪表
基于遗传算法的双馈风场分群策略1,于乐征2朱加明博方臣( 1.东北电力大学 电气工程学院 吉林 吉林 132012 2.国网山东省电力公司聊城供电公司,山东 聊城252200 3.国网安徽省电力公司安庆供电公司安徽 安庆 246003 4.大唐黑龙江新能源开发有限公司, 150090)摘要:双馈风电场无功控制采用恒功率因数控制,没有充分利用风电场内双馈风电机组和无功补偿设备的无功调节能力也没有考虑风电场集电系统的。考虑集电系统和调节能力的,策略实时监测的并网点电压数据和出力数据为基础,分析双馈风电机组的特性风电场的无功需求,利用算无功模型,降低集电系统和改善并网点电压的目的。某实际风场的仿真算例验证了所提策略的有效性。关键词:发电;无功; TM761.1 文献标识码:A 文章编号:1001-1390(201)00-0000-00
A clustering reactive power control strategy in DFIG-based wind farm based on genetic algorithm
Xu Mengfu1, Yu Lezheng1,Zhu Jiaming1,
(1. School of Electrical Engineering, Northeast Dianli University, Jilin132012, Jilin, China.
2. Liaocheng Power Supply Company of State Grid Shandong Electric Power Company, Liaocheng 252200, Shandong, China. 3. Anqing Power Supply Company of State Grid Anhui Electric Power Company, Anqing 246003, Anhui, China. 4. Datang Heilongjiang New Energy Development Limited Company, Harbin 246003, China)
Abstract: Most of the reactive power control of doubly-fed wind farm uses the constant power factor control, which doesn’t make full use of the reactive power adjustment capability of DFIG and reactive compensation equipment in doubly-fed wind farm, nor does it takes the network-loss in the power collector system into consideration. This paper presents a comprehensive consideration of the characteristics of current collector systems and reactive power regulation capabilities of DFIG for reactive power control strategy. The strategy is based on the real-time monitoring date includes the point of common coupling and active power output date of DFIG, according to analysis the power characteristics of DFIG and the reactive power demand of wind farm, it uses the genetic algorithm for multi-objective reactive power optimization control model of wind farm to reduce network-loss of the collector system and improve the power quality of the point of common coupling. A simulation case of an actual wind field verifies the validity of the strategy.
Keywords:wind power g
文档评论(0)