网站大量收购独家精品文档,联系QQ:2885784924

吴川一中1.1回归分析基本思想及其初步应用2014.2.20.ppt

吴川一中1.1回归分析基本思想及其初步应用2014.2.20.ppt

  1. 1、本文档共31页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
吴川一中1.1回归分析基本思想及其初步应用2014.2.20

编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 残差 -6.373 2.627 2.419 -4.618 1.137 6.627 -2.883 0.382 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。 表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。 使用公式 计算残差 残差图的制作及作用。 坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域; 对于远离横轴的点,要特别注意。 身高与体重残差图 异常点 错误数据 模型问题 几点说明: 第1个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。 用身高预报体重时,需要注意下列问题: 1、回归方程只适用于我们所研究的样本的总体; 2、我们所建立的回归方程一般都有时间性; 3、样本采集的范围会影响回归方程的适用范围; 4、不能期望回归方程得到的预报值就是预报变量的精确值。 事实上,它是预报变量的可能取值的平均值。 ——这些问题也使用于其他问题。 一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量。 (2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。 (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a). (4)按一定规则估计回归方程中的参数(如最小二乘法)。 (5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。 线性相关关系 (线性回归方程) 非线性相关关系 (非线性回归方程) * * 第一章 统计案例 1.1回归分析的基本思想及其初步应用 问题1:正方形的面积y与正方形的边长x之间 的函数关系是 y = x2 确定性关系 问题2:某水田水稻产量y与施肥量x之间是否 -------有一个确定性的关系? 复习:变量之间的两种关系 施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。 1、定义: 1):相关关系是一种不确定性关系; 注 对具有相关关系的两个变量进行统计分析的方法叫回归分析。 2): 思考:相关关系与函数关系有怎样的不同? 函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况 2、现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费。等等 3、对两个变量进行的线性分析叫做线性回归分析。 2、回归直线方程: 2.相应的直线叫做回归直线。 1、所求直线方程 叫做回归直 ---线方程;其中 某产品广告费支出x与销售额y(单位:百万元)之间有如下关系: 练习: (1)画出散点图; (2)求回归方程; (3)预测广告费支出7百万元时,销售额多少? x 2 4 5 6 8 y 30 40 60 50 70 求样本数据的线性回归方程,可按下列步骤进行: 第一步,列表计算平均数 , 第二步,求和 , 第三步,计算 第四步,写出回归方程 某产品广告费支出x与销售额y(单位:百万元)之间有如下关系: 练习: (1)画出散点图; (2)求回归方程; (3)预测广告费支出7百万元时,销售额多少? x 2 4 5 6 8 y 30 40 60 50 70 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 编号 1 2

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档