- 1、本文档共75页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Predictive Learning:深度学习与人工智能的未来
Y LeCunPredictive Learning1st Connectionist Summer School, CMU July 1986Y LeCun1st Connectionist Summer School, CMU July 1986Y LeCunBartlett MelYann LeCunStan DehaeneGerry TesauroMike MozerRichard DurbinBart SelmanAndy BartoJordan PollackDana BallardMike JordanJim HendlerDave TouretzkyDavid Willshaw Jay McClellandTerry SejnowskiGeoff HintonY LeCunSupervised LearningWe can train a machine on lots of examples of tables, chairs, dog, cars, and peopleBut will it recognize table, chairs, dogs, cars, and people it has never seen before?PLANECARCARDeep Learning = The Entire Machine is TrainableY LeCunTraditional Pattern Recognition: Fixed/Handcrafted Feature ExtractorFeature ExtractorTrainable ClassifierMainstream Modern Pattern Recognition: Unsupervised mid-level featuresFeature ExtractorMid-Level FeaturesTrainable ClassifierDeep Learning: Representations are hierarchical and trainedHigh-LevelFeaturesLow-Level FeaturesMid-Level FeaturesTrainable ClassifierY LeCunDeep Convolutional Nets for Object Recognition1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.Deep Learning = Learning Hierarchical RepresentationsY LeCunIts deep if it has more than one stage of non-linear feature transformationLow-Level FeatureMid-Level FeatureHigh-Level FeatureTrainable ClassifierFeature visualization of convolutional net trained on ImageNet from [Zeiler Fergus 2013]Very Deep ConvNet ArchitecturesY LeCunSmall kernels, not much subsampling (fractional subsampling).VGGGoogLeNetResNetConvNet for DrivingY LeCun(DARPA LAGR program 2005-2008)[Hadsell et al.,J. of Field Robotics 2009]Input imageStereo LabelsClassifier OutputInput imageStereo LabelsClassifier OutputImage captioning, Semantic Segmentation with ConvNetsY LeCun[Farabet et al. ICML 2011][Farabet et al. PAMI 2013][Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14][Karpathy 14][Donahue 14]...Driving Cars with Convolutional NetsY LeCunMobilEyeNVIDIADeepMask: ConvNet Locates and
文档评论(0)