网站大量收购独家精品文档,联系QQ:2885784924

基于PSODE混合算法优化的自抗扰控制器设计.docVIP

基于PSODE混合算法优化的自抗扰控制器设计.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于PSODE混合算法优化的自抗扰控制器设计   摘 要: 自抗扰控制器在强干扰系统和大时滞条件下的控制效果不好,主要影响因素是静态参数机制,为此设计了一种基于差分进化算法和粒子群算法联合优化的自抗扰控制器。使用粒子群算法对自抗扰控制器中抗扩张状态观测器的动量估计系数进行在线优化,使用误差阈值触发启动的伺服机制提高动态优化的计算速度,并使用差分进化算法的变异、交叉和选择算子提高粒子群算法的多样性,防止陷入局部最优值以提高算法的收敛精度。在热工时滞系统中的实验结果表明,改进后的算法在强干扰系统和大时滞条件下的控制效果得到提高,抗干扰性能和鲁棒性得到提高。   关键词: 自抗扰控制器; 粒子群算法; 差分进化算法; 抗干扰; 鲁棒性   中图分类号: TN02?34; TP183 文献标识码: A 文章编号: 1004?373X(2017)03?0092?04   Design of active disturbance rejection controller based on   joint optimization algorithm of PSODE   REN Lu, HE Ping, ZHANG Xiaolei, GUO Xiulin   (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)   Abstract: Since the active disturbance rejection controller in strong interference system and under large?delay condition has bad control effect due to the influence of the static parameter mechanism, an active disturbance rejection controller based on the joint optimization of the particle swarm optimization algorithm and difference evolution algorithm was designed. The particle swarm optimization algorithm is used to optimize the momentum estimation coefficient of the anti?expansion state observer in the controller online. The servo mechanism started by the error threshold trigger is adopted to improve the computation speed of the dynamic optimization. The mutation, crossover and selection operators of the difference evolution algorithm are employed to improve the diversity of the particle swarm optimization algorithm and prevent it from falling into the local optimum, so as to improve the convergence precision of the algorithm. The experimental results of the thermal time delay system show that the control effect of the improved controller in strong interference system and under large?delay condition is improved, and the anti?jamming performance and robustness are enhanced.   Keywords: active disturbance rejection controller; particle swarm optimization; differential evolution algorithm; anti?jamming performance;

您可能关注的文档

文档评论(0)

heroliuguan + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8073070133000003

1亿VIP精品文档

相关文档