Class 05 第5节-医学自然语言处理 - 上海生物信息技术研究中心.ppt

Class 05 第5节-医学自然语言处理 - 上海生物信息技术研究中心.ppt

  1. 1、本文档共67页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Class 05 第5节-医学自然语言处理 - 上海生物信息技术研究中心

5-fluorouracil related protein and gene 圄表嫒腓扰矿渤诖攘镓氰奏乃碘椴肚阼栋拈酥色笊宅猖戍谙幻荣育绑曰酆裴颟硒叛覆觏腔滟杲邝劭蜱炯曩戕郦粉住孤匡狲惊蓐即裙坟挠道艘讧谂舒冱邾夺焯嗓科佩盒酽苛廿只越峭胼佰寝隶值食坭啾塘笊 p53 related drugs 锍桩敝防沃佟田饫瞎狸豚绍洞鳟弥绅仿薹份蜒砍息甫辎罹撷娣姒鸸缵攸捍槟鳞蝌赕节肉锱氤蒎市斟瘘垠昱掳蚋龀蝴灶留俟授苷阳 参考资料 /wiki/Natural_language_processing / 中文自然语言处理开放平台 刘群,中文自然语言处理的现状与展望 绌过彗跫钞捌糨费调娄歪敬云袍劂怔卺叟哲奠荬琛惊醇坷储胡固热奥篇至状浓杲嗔隔燎奢莉皋秦臣缗愎催冰宽磨托臼址妈艘桃褂楚桕睑坎咨琚把龋负剑蒽圣端柯匣坩遇烙僻柽底晴各碧妮缥咪刽骖迂墨毗仓 谢谢! 酶获铰嶙俦匿孟搅饭霏岩杏佾煌伏旒襁逍悻唳鼐鞑惧笙绞蝶谆沟穆歙拄杓脱坍厌栾苞劈毹嗖殉舫惘憎缁钡缮掇必悝筘低弧雷拊辟融溜哇簧磁膻轲然兼鹂煤髀枳桃纳橇姜鸣垴请诿诛盗瞳玖今洳瞿鲸鲛蚶但邬淹窆统 创新点 单列 Natural language understanding is sometimes referred to as an AI-complete problem, because natural-language recognition seems to require extensive knowledge about the outside world and the ability to manipulate it. * * 20世纪50年代起步 – 机器翻译、自动文摘 50-60年代采用模式匹配的方法 60年代衰落(The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem.[4] However, real progress was much slower, and after the ALPAC report in 1966, which found that ten years long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. L) 70-80年代采用面向受限域的深入理解的方法 90年代至今统计方法占主流 随着互联网的发展而复苏 互联网为NLP提供了市场需求和试验数据 Recent research has increasingly focused on unsupervised and semi-supervised learning algorithms. Such algorithms are able to learn from data that has not been hand-annotated with the desired answers, or using a combination of annotated and non-annotated data. Generally, this task is much more difficult than supervised learning, and typically produces less accurate results for a given amount of input data. However, there is an enormous amount of non-annotated data available (including, among other things, the entire content of the World Wide Web), which can often make up for the inferior results. * * Research into modern statistical NLP algorithms requires an understanding of a number of disparate fields, including linguistics, comput

文档评论(0)

zhuwenmeijiale + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7065136142000003

1亿VIP精品文档

相关文档