- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于MATLAB的LPC分析_语音信号处理实验报告
南京信息工程大学 实验(实习)报告
实验(实习)名称 基于MATLAB的LPC分析 实验(实习)日期 2013.5.2 得分 ___指导教师
院电子与信息工程专业电子信息工程年级 班次 姓名 学号
一、实验目的
线性预测分析是最有效的语音分析技术之一,在语音编码、语音合成、语音识别和说话人识别等语音处理领域中得到了广泛的应用。语音线性预测的基本思想是:一个语音信号的抽样值可以用过去若干个取样值的线性组合来逼近。通过使实际语音抽样值与线性预测抽样值的均方误差达到最小,可以确定唯一的一组线性预测系数。
采用线性预测分析不仅能够得到语音信号的预测波形,而且能够提供一个非常好的声道模型。如果将语音模型看作激励源通过一个线性时不变系统产生的输出,那么可以利用LP分析对声道参数进行估值,以少量低信息率的时变参数精确地描述语音波形及其频谱的性质。此外,LP分析还能够对共振峰、功率谱等语音参数进行精确估计,LP分析得到的参数可以作为语音识别的重要参数之一。
由于语音是一种短时平稳信号,因此只能利用一段语音来估计模型参数。此时有两种方案:一种是将长的语音序列加窗,然后对加窗语音进行LP分析,只要限定窗的长度就可以保证分析的短时性,这种方案称为自相关法;另一种方案不对语音加窗,而是在计算均方预测误差时限制其取和区间,这样可以导出LP分析的自协方差法。
本实验要求掌握LPC原理,会利用已学的知识,编写程序估计线性预测系数以及LPC的推演参数,并能利用所求的相关参数估计语音的端点、清浊音判断、基因周期、共振峰等。
二、实验原理
1 LP分析基本原理
LP分析为线性时不变因果稳定系统V(z)建立一个全极点模型,并利用均方误差准则,对已知的语音信号s(n)进行模型参数估计。
如果利用P个取样值来进行预测,则称为P阶线性预测。假设用过去P个取样值的加权之和来预测信号当前取样值,则预测信号为:
(1)
其中加权系数用表示,称为预测系数,则预测误差为:
(2)
要使预测最佳,则要使短时平均预测误差最小有:
(3)
(4)
令
(5)
最小的可表示成:
(6)
显然,误差越接近于零,线性预测的准确度在均方误差最小的意义上为最佳,由此可以计算出预测系数。
通过LPC分析,由若干帧语音可以得到若干组LPC参数,每组参数形成一个描绘该帧语音特征的矢量,即LPC特征矢量。由LPC特征矢量可以进一步得到很多种派生特征矢量,例如线性预测倒谱系数、线谱对特征、部分相关系数、对数面积比等等。不同的特征矢量具有不同的特点,它们在语音编码和识别领域有着不同的应用价值。
2 自相关法
在最佳线性预测中,若用下式定义的时间平均最小均方准则代替(3)式的集合平均最小均方准则,即令
(7)
事实上就是短时自相关函数,因而
(8)
(9)
根据平稳随机信号的自相关性质,可得
(10)
由(6)式,可得:
(11)
综上所述,可以得到如下矩阵形式:
(12)
值得注意的是,自相关法在计算预测误差时,数据段的两端都需要加P个零取样值,因而可造成谱估计失真。特别是在短数据段的情况下,这一现实更为严重。另外,当预测系数量化时,有可能造成实际系统的不稳定。
文档评论(0)