多元统计复习题 附答案.docx

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多元统计复习题 附答案

复习题原文:答案:4.2 试述判别分析的实质。4.3 简述距离判别法的基本思想和方法。4.4 简述贝叶斯判别法的基本思想和方法。4.5 简述费希尔判别法的基本思想和方法。4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。4.2 试述判别分析的实质。答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p维空间构造一个“划分”,这个“划分”就构成了一个判别规则。4.3 简述距离判别法的基本思想和方法。答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是1和2,对于一个新的样品X,要判断它来自哪个总体。计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X,D2(X,G1)D2(X,G2)X,D2(X,G1) D2(X,G2,具体分析,记则判别规则为X,W(X)X,W(X)0②多个总体的判别问题。设有个总体,其均值和协方差矩阵分别是和,且。计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。具体分析,取,,。可以取线性判别函数为, 相应的判别规则为若4.4 简述贝叶斯判别法的基本思想和方法。基本思想:设k个总体,其各自的分布密度函数,假设k个总体各自出现的概率分别为,,。设将本来属于总体的样品错判到总体时造成的损失为,。设个总体相应的维样本空间为。在规则下,将属于的样品错判为的概率为则这种判别规则下样品错判后所造成的平均损失为则用规则来进行判别所造成的总平均损失为贝叶斯判别法则,就是要选择一种划分,使总平均损失达到极小。基本方法:令,则若有另一划分,则在两种划分下的总平均损失之差为因为在上对一切成立,故上式小于或等于零,是贝叶斯判别的解。从而得到的划分为4.5 简述费希尔判别法的基本思想和方法。答:基本思想:从个总体中抽取具有个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数可使得总体之间区别最大,而使每个总体内部的离差最小。将新样品的个指标值代入线性判别函数式中求出值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。答:① 费希尔判别与距离判别对判别变量的分布类型无要求。二者只是要求有各类母体的两阶矩存在。而贝叶斯判别必须知道判别变量的分布类型。因此前两者相对来说较为简单。② 当k=2时,若则费希尔判别与距离判别等价。当判别变量服从正态分布时,二者与贝叶斯判别也等价。③ 当时,费希尔判别用作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不同。④ 距离判别可以看为贝叶斯判别的特殊情形。贝叶斯判别的判别规则是 X,W(X)X,W(X)lnd距离判别的判别规则是X,W(X)X,W(X)0二者的区别在于阈值点。当,时,,。二者完全相同。4.7 设有两个二元总体和 ,从中分别抽取样本计算得到 ,, 假设,试用距离判别法建立判别函数和判别规则。 样品X=(6,0)’应属于哪个总体?解:= ,= , ==即样品X属于总体5.1 判别分析和聚类分析有何区别?5.2 试述系统聚类的基本思想。5.3 对样品和变量进行聚类分析时,所构造的统计量分别是什么?简要说明为什么这样构造5.5试述K均值法与系统聚类法的异同。5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有n个样本,对每个样本测得p项指标(变量)的数据,已知每个样本属于k个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。5.2 试述系统聚类的基本思想。答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。5.3 对样品和变量进行聚类分析时,所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n个样本看作p维空间的n个点。点之间的距离即可代表样品间的相似度

文档评论(0)

wyjy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档