- 1、本文档共26页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
毕业设计基于小波分析光谱数据去噪正文
基于小波分析的光谱数据去噪
1.1 课题背景及意义
光谱分析法是以辐射能与物质组成和结构之间的内在联系及表现形式光谱的测量为基础,利用光谱来分析样品的物质组成,属性或者物态信息的技术。由于光谱分析技术具有分析速度快,精度高,结果稳定,无破坏等优点,在化工农业医学等领域得到越来越广泛的应用。
由于在光谱测量过程会中受到仪器,样品背景,各种干扰等随机因素的影响,得到的光谱数据中不可避免的含有噪声,如果不加以处理,会影响校正模型建立的质量和未知样品预测结果的准确性。通过对光谱数据的去噪预处理,可以减少噪声的影响,提高模型的稳定性。通常采用的去噪方法包括平滑,傅立叶分析等。其中光谱平滑的目的是消除高频随机误差,其基本思路是在平滑点的前后各取若干点来进行平均或拟合以求得平滑点的最佳估计值,消除随机噪声,这一方法的基本前提是随机噪声在处理窗口内的均值为零。这种平滑的方法可有效地平滑高频噪声,提高信噪比,但是它对有效信号也进行平滑,容易造成信号失真,降低了光谱分辨率,而且光谱的两端不能进行平滑,因此存在一定的局限性。傅立叶分析对数据处理应用的主要目的是加快信息的提取过程,通过压缩数据使得信息提取更加有效,同时去除干扰和噪声。在传统的信号处理中,傅立叶分析是数据预处理的主要手段,但是傅立叶分析只能获得信号的整个频谱,不能得到信号的局部特性,不能充分刻画动态的非平稳信号的特征。而小波分析可以把各种频率组成的混合信号按照不同的分辨尺度分解成一系列不同频率的块信号。由此可对特殊频率范围内的噪声进行滤波处理,小波分析灵活滤波的特性是其它方法无法比拟的。小波分析是从傅立叶分析的基础上发展以来的,通过引入可变的尺度因子和平移因子,在信号分析时具有可调的时频窗口,巧妙地解决了时频局部化矛盾,弥补了傅立叶分析的不足,为信号处理提供了一种多分辨率下的动态分析手段。由于小波分析对信号的分时分频的精细表达和多分辨率分析的特点,即有用信号和噪声信号在不同尺度上呈现不同的视频特征或者传播行为,根据这些特征的不同,可以将有用信号提取出来。小波算法能够满足各种去噪要求,如低通,高通,随机噪音的去除等。
小波分析有效地完成了信号的时间与空间的局部化,对于信号分析而言意义重大。小波分析具有多分辨率分析和多尺度的特点,可以由粗到精地逐步观察信号,同时还具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点;适当地选择基小波,可以使其在时频两域都有表征信号局部特征的能力,因此非常有利于信号分析。由于小波分析具有以上特性,人们把小波分析誉为分析信号的数学显微镜。
1.2 MATLAB软件的应用进行了解,进行仿真前的准备。
1.3 研究工具
本文研究所用的工具是MATLAB的小波工具箱。MATLAB是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,它集数值分析,矩阵运算,信号处理和图形显示于一体,构成了一个方便的,界面友好的用户环境。小波工具箱是许多基于MATLAB技术计算环境的函数包的集合。应用MATLAB体系下的小波与小波包,提供了分解和综合信号的工具。小波工具箱提供两种工具,一是控制线的函数,二是图像操作工具。第一类工具是由可以直接调出线或应用命令的函数组成,这些函数大多是M文件或者各种实现特定的小波分解与综合算法的陈述[7]。
本文的第二部分主要介绍了小波分析的一些基础的理论知识,并对小波的一些去噪方法进行了解析,第三部分则是根据小波分析进行光谱数据去噪的仿真。第四部分对本文进行总体的总结以及对未来的展望。
2 小波分析的理论基础及去噪方法的解析
本节主要介绍了小波分析的基本理论以及小波分析对一维信号进行消噪处理,其中理论部分包括连续小波分析,小波分析和傅立叶分析的比较,常用小波的介绍以及多分辨率分析在小波分析理论中的作用。运用小波分析进行一维信号的消噪处理是小波分析的一个重要应用,尤其是在光谱数据预处理去噪中有着广泛的应用。主要有基于小波分析的局部极大值点去噪和基于阈值去噪的两种技术。Mallat提出了通过寻找小波分析系数中的局部极大值点,并根据此重构信号可以很好的逼近原始信号。Donoho提出了基于阈值的小波去噪方法,先对信号进行小波分析,再对小波分析值进行去噪处理,最后反分析得到去噪后的信号[8],[9]。
2.1 连续小波分析的基本概念
小波分析方法是一种窗口大小(即窗口面积)固定但其形状可变,时间窗和频率窗都可改变的时频局部化分析方法,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。正是这种特性,使小波分析具有对信号的自适应性[10]。
小波分析被看成调和分析这一数学领域半个世纪以来的工作结晶,已经广泛地应用于信号处理,图像处理,量子场论,地震勘探,语音合成与识别,音乐,雷达,C
您可能关注的文档
最近下载
- 色漆和清漆 -防护涂料体系对钢结构的防腐蚀保护-.docx VIP
- 基于区块链的可信联邦学习架构.pptx
- 1:5万区域地质调查技术指南.ppt
- 2024广东潮州市饶平县新圩镇人民政府招聘后勤服务人员2人笔试备考试题及答案解析.docx
- TB∕T 10183-2021 铁路工程信息模型统一标准.pdf
- 新部编版三年级道德与法治(上册)期末总复习及答案.doc
- 2024年河北省继续医学教育公共选修课参考答案.docx VIP
- (新教科版)五年级科学上册全册复习课件.pptx
- 铸牢中华民族共同体意识-考试复习题库(含答案).docx VIP
- 5AM4U3P3 Fire safety教学设计(宝山区和衷小学 ).docx
文档评论(0)