- 1、本文档共122页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
结构化学课件-第六章6-王卫东(化学)
6.2 配位场理论 特点 遵循18电子规则 成键情况可用等瓣相似规则进行分析? 化合物类型 1.过渡金属羰基配位化合物 2.分子氮配合物 3.不饱和烃配位化合物 4.环多烯和过渡金属的配位化合物 许多过渡金属 能以σ-π配键与CO配体形成配合物,例如:Ni(CO)4,Fe(CO)5,Cr(CO)6等。在羰基配合物中,配体CO以C的孤对电子与金属的空d轨道形成σ配键,金属的d轨道上电子再反馈到CO的π*轨道上形成反馈π键,两种作用结合起来,称为σ-π授受键,使金属与碳之间的键比单键强,C-O间键比CO分子中要弱,因为反键π*轨道上也有一些电子。 6.3.1 过渡金属羰基配位化合物 和小分子配位化合物 金属羰基配位化合物的两个例子 当CO与金属原子键合时,其(σ2p)上的电子对与中心原子的空的sp3杂化轨道形成σ键。而空的π2p*又可以和金属原子充满电子的d轨道重叠形成反馈π键,所以,在Ni(CO)4中化学键为σ-π配键。 一方面,CO把一对电子填入Ni的sp3杂化轨道中形成σ键,一方面又以空的π2p*轨道接受来自Ni 的d轨道的电子,形成π键,从而增加配合物的稳定性,但削弱了CO内部成键, 活化CO分子。 (1) 单核羰基配合物 以Ni(CO)4为例: 以Ni(CO)4为例: 前面提到,对于原子序数为奇数的金属,在形成羰基配合物时,为了满足EAN规则,金属与金属相互结合形成二聚体。例如Mn2(CO)10和Co2(CO)8。分子中含有多于一个金属原子的羰基配合物叫做多核羰基配合物。在多核羰基配合物的结构中,有两点值得注意: (2).多核羰基配合物 a、CO可以有两种不同的方式与金属相结合。 第一种:CO分子以其碳原子一端与金属配位,这与单核羰基配合物的情况相同,以这种方式结合的CO分子成为端基分子。 第二种:CO以桥基方式与两个或更多个金属相联。 b、在多核羰基配合物中,金属与金属原子之间有共价键形成。 例如,在Fe2(CO)9中,实验证明两个铁原子被3个桥联式羰基联结起来。此外,每个铁原子又分别与三个端式羰基相连,两个铁原子的距离相当近,说明他们之间又共价键形成。 Co2(CO)8(在固体中) Mn2(CO)10 Ru3(CO)12或Os3(CO)12 Ir4(CO)12 Rh4(CO)12或Co4(CO)12 - ++ + --- +++ --- ++ +++ -- ++ -- -- ++ --- ++ --- + +++ M + C≡O M C≡O C≡O + M M C≡O M-C-O 中σ-π配键示意图 图6-8 M-C-O中σ-π授受键示意图 18电子规则:大多数羰基配位化合物都有一个特点,就是每一个金属原子的价电子数和它周围的配位体提供的价电子数加在一起满足18电子结构规则,是反磁性的。例如: M Cr Mn Fe 价电子数 6 7 8 需要电子数 12 11 10 形成的羰基 配位化合物 M Co Ni 价电子数 9 10 需要电子数 9 8 形成的羰基 配位化合物 分子氮配合物对推进化学模拟生物固氮,寻找合成氨的新型催化剂,实现在温和条件下合成氨,具有重要意义,所以引起了化学家和生物学家们的普遍注意,成为当今无机化学中非常活跃的一个研究领域。 6.3.2. 分子氮配合物 1.分子氮配合物的合成 第一个分子氮(N2)配合物是1965年由Allen和Senoff在水溶液中用水合肼还原三氯化钌而制得的。随后很快就研究出用氮气直接合成分子氮配合物的方法。 2[(C6H11)3P]3+N2-25℃→[(C6H11)3P]2+Ni(N2)Ni[(C6H11)3P]2+2(C6H11)3P 2.分子氮配合物中的化学键 N2与CO是等电子体,分子氮与过
文档评论(0)