基于主成分分析的企业经济效益研究.doc

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于主成分分析的企业经济效益研究

基于主成分分析的企业经济效益研究 摘要:在多指标综合评价中, 主成分分析法利用降维的思想,把多指标转化为少数几个综合指标,是一种较为客观的综合评价方法。对各地区工业企业经济效益进行综合评价和分类,是制定各地区工业企业发展政策和区域协调发展政策的重要依据。目前,我国评价工业企业经济效益的指标很多,这些指标仅仅从不同侧面评价了工业企业的经济效益,但综合分析没有得以体现。正是基于这一点,本文以2006年中国各地区全部国有及规模以上非公有工业企业主要经济效益指标为基础,运用主成分分析法,结合SPSS统计软件对全国三十一个地区的工业企业综合竞争力进行综合评价。 关键词:主成分分析;经济效益;综合指标 背景介绍 企业的经济效益就是企业在经济活动中所取得的劳动成果与劳动消耗的比值,企业的生产总值同生产成本之间的比例关系。用公式表示: 经济效益=(生产总值/生产成本)= C:消耗原材料价值;V:工人工资;M:利润。 对企业经济效益的评价主要依靠对企业财务指标的分析,实质就是对企业的偿债能力、盈利能力、营运能力等指标的评价。从生产经营角度分析,经济效益可用资产报酬率、权益报酬率等指标反映;从物化劳动效果角度分析,经济效益可用销售利税率、成本费用利税率、固定资产生产率和流动资产周转率等指标反映;而从活劳动效果角度分析,经济效益可用全员劳动生产率和人均利税率等指标反映。这些指标大多是依据财务报告数据计算出来的。 对企业经济效益因素分析,一是从资金占用和资金周转的角度,分析影响经济效益的资金因素;二是从原材料、工资、费用等支出角度,分析影响经济效益的成本因素。此外还要把企业自身的微观经济效益与全社会的宏观经济效益联系起来,把当前的经济效益与长远经济效益结合起来。1995年财政部公布了《企业经济效益评价体系》十项指标,国家统计局1998年制定了一套工业企业经济效益考核指标体系,含有总资产贡献率、资本保值增值率、流动资产周转率、成本费用利润率、全员劳动生产率、产品销售率和资产负债率七大指标,改变了过去采用产值和产量等单一指标考核的状况;2002年财政部、国家经贸委、中央企业工委、劳动保障部、国家计委制定了关于《企业绩效评价操作细则(修订)》28项指标。 对各地区工业企业经济效益进行综合评价和分类,是制定各地区工业企业发展政策和区域协调发展政策的重要依据。目前,我国评价工业企业经济效益的指标很多,如工业增加值率、总资产贡献率、资产负债率、流动资产周转次数、工业成本费用率和产品销售率等。这些指标仅仅从不同侧面评价了工业企业的经济效益,但综合分析没有得以体现。正是基于这一点,本文以2006年中国各地区全部国有及规模以上非公有工业企业主要经济效益指标为基础,运用主成分分析法,结合SPSS统计软件对全国三十一个地区的工业企业综合竞争力进行综合评价。 主成分分析法 2.1主成分分析的基本思想 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 2.2主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统

文档评论(0)

wyjy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档