- 1、本文档共71页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
五原子发射光谱法
卫生检验基础 第五章 原子发射光谱法 基本要点: 1. 了解原子发射光谱分析的基本原理; 2. 掌握各种激发光源的特点及光源的选择; 3. 熟悉光谱仪的基本组成和作用; 4. 掌握光谱定性分析方法及操作过程; 5.掌握光谱内标法定量分析的基本原理和方法。 第一节 光学分析法概要 1.定义:光学分析法主要根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的。 2.电磁波谱 射线 5~140pm X射线 10-3~10nm 光学区 10~1000μm 其中:远紫外区 10~200nm 近紫外区 200~380nm 可见区 380~780nm 近红外区 0.78~2.5μm 中红外区 2.5~50μm 远红外区 50~1000μm 微波 0.1mm~1m 无线电波 1m 3.光学分析法分类 (1)光谱分析方法: 基于测量辐射的波长及强度。这些光谱是由于物质的原子或分子的特定能级的跃迁所产生的,根据其特征光谱的波长可进行定性分析;而光谱的强度与物质的含量有关,可进行定量分析。根据辐射能量传递的方式,光谱方法又可分为发射光谱、吸收光谱、荧光光谱、拉曼光谱等等。 (2)非光谱分析法: 不涉及光谱的测定,即不涉及能级的跃迁,而主要是利用电磁辐射与物质的相互作用。引起电磁辐射在方向上的改变或物理性质的变化,而利用这些改变可以进行分析。 第二节 基本原理 一、原子光谱的产生 原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子 。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位 。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 当原子从较高能级跃迁到基态或其它较低的能级的过程中,将释放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示: E2,E1分别为高能级、低能级的能量,h为普朗克(Planck)常数;v 及λ分别为所发射电磁波的频率及波长,c为光在真空中的速度。 每一条所发射的谱线的波长,取决于跃迁前后两个能级之差。由于原子的能级很多,原子在被激发后,其外层电子可有不同的跃迁,但这些跃迁应遵循一定的规则(即“光谱选律”),因此对特定元素的原子可产生一系列不同波长的特征光谱线,这些谱线按一定的顺序排列,并保持一定的强度比例。 光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。 二、发射光谱分析的过程 1.试样在能量的作用下转变成气态原子,并使气态原子的外层电子激发至高能态。当从较高的能级跃迁到较低的能级时,原子将释放出多余的能量而发射出特征谱线。 2.所产生的辐射经过摄谱仪器进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的谱线条,即光谱图。 3.根据所得光谱图进行定性鉴定或定量分析。 原子发射光谱法 原子发射光谱法(atomic emmission spectroscopy, AES)是将试样用热或电能激发,然后测量被激发试样所发射的光辐射。根据它发射的谱线的波长可以进行定性分析,测量谱线的强度可以进行定量分析。 原子发射光谱分析(AES)是一种历史悠久的光谱分析方法。1860年前后基尔霍夫(Kirchhoff)和本生(Bunsen)利用分光镜研究盐和盐溶液在火焰中加热时所产生的特征光辐射(光谱)。不管盐类的来源如何,只要这些盐中含有相同的金属组份,则将这些溶液蒸发到火焰或放电隙中去就会产生相同的波长的谱线,从而确定了光谱分析的基础。 20世纪50年代它曾是作为测定微量元素和痕量元素的主要手段。到了60年代随着原子吸收光谱法(AAS)的兴起,体现出比原子发射光谱法有更好的优越性,因此原子吸收光谱法得到了普及。而原子发射光谱法由于存在基体效应、第三元素的影响、检测极限以及精密度
文档评论(0)