- 1、本文档共97页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高人工智能贝叶斯公式
史忠植 高级人工智能 高级人工智能 内容提要 4.1概述 4.2贝叶斯概率基础 4.3贝叶斯学习理论 4.4简单贝叶斯学习模型 4.5贝叶斯网络的建造 4.6主动贝叶斯网络 4.7贝叶斯潜在语义模型 4.8贝叶斯网络的证据推理 贝叶斯网络是什么 贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。 贝叶斯方法正在以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习特性等成为当前数据挖掘众多方法中最为引人注目的焦点之一。 贝叶斯网络是什么 贝叶斯(Reverend Thomas Bayes 1702-1761)学派奠基性的工作是贝叶斯的论文“关于几率性问题求解的评论”。或许是他自己感觉到它的学说还有不完善的地方,这一论文在他生前并没有发表,而是在他死后,由他的朋友发表的。著名的数学家拉普拉斯(Laplace P. S.)用贝叶斯的方法导出了重要的“相继律”,贝叶斯的方法和理论逐渐被人理解和重视起来。但由于当时贝叶斯方法在理论和实际应用中还存在很多不完善的地方,因而在十九世纪并未被普遍接受。 贝叶斯网络是什么 二十世纪初,意大利的菲纳特(B. de Finetti)以及英国的杰弗莱(Jeffreys H.)都对贝叶斯学派的理论作出重要的贡献。第二次世界大战后,瓦尔德(Wald A.)提出了统计的决策理论,在这一理论中,贝叶斯解占有重要的地位;信息论的发展也对贝叶斯学派做出了新的贡献。1958年英国最悠久的统计杂志Biometrika全文重新刊登了贝叶斯的论文,20世纪50年代,以罗宾斯(Robbins H.)为代表,提出了经验贝叶斯方法和经典方法相结合,引起统计界的广泛注意,这一方法很快就显示出它的优点,成为很活跃的一个方向。 贝叶斯网络是什么 随着人工智能的发展,尤其是机器学习、数据挖掘等兴起,为贝叶斯理论的发展和应用提供了更为广阔的空间。贝叶斯理论的内涵也比以前有了很大的变化。80年代贝叶斯网络用于专家系统的知识表示,90年代进一步研究可学习的贝叶斯网络,用于数据采掘和机器学习。近年来,贝叶斯学习理论方面的文章更是层出不穷,内容涵盖了人工智能的大部分领域,包括因果推理、不确定性知识表达、模式识别和聚类分析等。并且出现了专门研究贝叶斯理论的组织和学术刊物ISBA 贝叶斯网络的应用领域 辅助智能决策 数据融合 模式识别 医疗诊断 文本理解 数据挖掘 统计概率 统计概率:若在大量重复试验中,事件A发生的频率稳定地接近于一个固定的常数p,它表明事件A出现的可能性大小,则称此常数p为事件A发生的概率,记为P(A), 即 p=P(A) 可见概率就是频率的稳定中心。任何事件A的概率为不大于1的非负实数,即 0<P(A)<1 条件概率 条件概率:我们把事件B已经出现的条件下,事件A发生的概率记做为P(A|B)。并称之为在B出现的条件下A出现的条件概率,而称P(A)为无条件概率。 若事件A与B中的任一个出现,并不影响另一事件出现的概率,即当P(A)=P(A·B)或P(B)=P(B·A)时,则称A与B是相互独立的事件。 加法定理 两个不相容(互斥)事件之和的概率,等于两个事件概率之和,即 P(A+B)= P(A)+P(B) 若A、B为两任意事件,则: P(A+B)=P(A)+P(B)-P(AB) 乘法定理 设A、B为两个任意的非零事件,则其乘积的概率等于A(或B)的概率与在A(或B)出现的条件下B(或A)出现的条件概率的乘积。 P(A·B)=P(A)·P(B|A) 或 P(A·B)=P(B)·P(A|B) 贝叶斯网络定义 贝叶斯网的表示方法 先验概率 后验概率 联合概率 全概率 贝叶斯规则 基于条件概率的定义 p(Ai|E) 是在给定证据下的后验概率 p(Ai) 是先验概率 P(E|Ai) 是在给定Ai下的证据似然 p(E) 是证据的预定义后验概率 贝叶斯网络的概率解释 任何完整的概率模型必须具有表示(直接或间接)该领域变量联合分布的能力。完全的枚举需要指数级的规模(相对于领域变量个数) 贝叶斯网络提供了这种联合概率分布的紧凑表示:分解联合分布为几个局部分布的乘积: 从公式可以看出,需要的参数个数随网络中节点个数呈线性增长,而联合分布的计算呈指数增长。 网络中变量间独立性的指定是实现紧凑表示的关键。这种独立性关系在通过人类专家构造贝叶斯网中特别有效。 简单贝叶斯Na?ve Bayesian How to trai
您可能关注的文档
最近下载
- 第一章 2.2 水量平衡.ppt
- 《GB/T 19326-2022锻制支管座》.pdf
- 2022年11月陕西省从优秀村社区干部中考试录用200名乡镇街道机关公务员上岸冲刺卷I含答案详解版(3套).docx VIP
- 2020年银行业从业人员职业操守和行为准则.pdf VIP
- 转预备党员思想汇报【银行】.pdf VIP
- 【新教材】人教版(2024)七年级上册英语Unit 4 My Favourite Subject教案.docx
- 米厂恒温仓库工程设计方案.docx
- 2024年党校入党积极分子培训考试必考重点知识汇编(共160题).doc VIP
- 《世界经典神话与传说故事》 测试题及答案.pdf
- 智能制造设备安装与调试职业技能等级标准(2021年).pdf
文档评论(0)