网站大量收购独家精品文档,联系QQ:2885784924

电镜的分类及介绍.ppt

  1. 1、本文档共34页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
电镜的分类及介绍

透射电子显微电镜 透射电镜由三大系统组成,包括镜体系统、真空系统和电子线路系统。镜体系统是电镜的主体,结构相当复杂,又分为照明系统、成像系统和观察记录系统。 透射电子显微电镜,是发展最早、应用最广泛的电镜,一般所说的电镜指的便是透射电镜。透射电镜主要用于观察组织细胞的内部结构。 照明系统由电子枪和聚光镜组成,电子枪发射电子作为电镜的照明光源。在电镜中电子射线在几万伏的加速电压作用下产生了短波长高能电子束,加速电压越高,电子束的波长越短,电镜的分辨率就越高。聚光镜则将来自电子枪的电子束会聚在样品上并可调节照明强度等。 扫描电子显微镜 光学显微镜的分类 光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 双目体视显微镜 金相显微镜 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。 荧光显微镜 荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。 相衬显微镜 在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。 微分干涉对比显微镜 微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 倒置显微镜 倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。 由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为倒置显微镜。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。 目见倒置显微镜广泛应用于patch-clamp ,transgene ICSI 等领域。 数码显微镜 数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。 端粒与端粒酶的研究及应用 最早观察染色体末端的科学家始于19世纪末期,Rabl[1]在1885年注意到染色体上所有的末端都处于细胞核的一侧。20世纪30年代,两个著名的遗传学家McClintock B [2]和Muller HJ [3]发现了染色体的末端可维持染色体的稳定性和完整性。Muller将它定义为“telomere”,这是由希腊词根“末端”(telos)及“部分” (meros)组成的。30多年前,Hayflick[4]首次提出将体外培养的正常人成纤维细胞的“有限复制力”作为细胞衰老的表征。在此过程中,细胞群中的大部分细胞经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活性,只是在基因表达方式上有一定的改变。于是Hayflick猜测细胞内有一个限制细胞分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟”在细胞核的染色体末端——端粒。但端粒究竟是怎样的复杂结构呢?Blackburn和Gall[5] 于1978年首次阐明了四膜虫rDNA分子的末端结构,他们发现这种rDNA每条链的末端均含有大量的重复片段,并且这些大量重复的片段多是由富含G、C 的脱氧核苷酸形成的简单序列串联而成。在1985年,CW?Greider和EH?Blackburn发现将一段

文档评论(0)

pangzilva + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档