第十三讲 工具变量回归.ppt

  1. 1、本文档共92页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第十三讲 工具变量回归

工具变量回归 造成误差项与回归变量相关(内生性)的原因很多,但我们主要考虑如下几个方面: 遗漏变量变量 变量有测量误差 双向因果关系。 遗漏变量偏差可采用在多元回归中加入遗漏变量的方法加以解决,但前提是只有当你有遗漏变量数据时上述方法才可行。 双向因果关系偏差是指如果有时因果关系是从X到Y又从Y到X时,此时仅用多元回归无法消除这一偏差。同样, 变量有测量误差也无法用我们前面学过的方法解决。 因此我们就必须寻找一种新的方法。 工具变量(instrumental variable, IV)回归是当回归变量X与误差项u相关时获得总体回归方程未知系数一致估计量的一般方法。我们经常称其为IV估计。 其基本思想是:假设方程是: 在经济学中: (1)内生变量:由模型内的变量所决定的变量称作内生变量。 (2)外生变量:由模型外的变量所决定的变量称作外生变量。 重要概念:内生变量和外生变量 在计量经济学中,把所有与扰动项相关的解释变量都称为“内生变量”。这与一般经济学理论中的定义有所不同。 1。与误差项相关的变量称为内生变量(endogenous variable)。 2。与误差项不相关的变量称为外生变量(exogenous variable)。 我们的工作就是要寻找相应的工具变量将解释变量分解成内生变量和外生变量,然后利用两阶段最小二乘法(TSLS)进行估计。 一个例子:考虑货币政策对宏观经济的影响。由于货币政策的制定者会根据宏观经济的运行情况来调整货币政策,故货币政策是个内生变量(双向因果关系)。Romer (2004)通过阅读历史文献将货币政策的变动分解为“内生”(对经济的反应)与“外生”(货币当局的自主调整)的两部分。 工具变量的选取 一个有效的工具变量必须满足称为工具变量相关性和工具变量外生性两个条件:即 两阶段最小二乘估计量 若工具变量Z满足工具变量相关性和外生性的条件,则可用称为两阶段最小二乘(TSLS)的IV估计量估计系数?1。 两阶段最小二乘估计量分两阶段计算: 第一阶段把X分解成两部分:即与回归误差项相关的一部分以及与误差项无关的一部分。 第二阶段是利用与误差项无关的那部分进行估计。 具体来说: 第一阶段:将X分解成与X高度相关的外生变量Z以及与干扰项ui相关的部分vi。 工具变量回归 谁开创了工具变量回归? 1928年的著作的“The Tariff on Animal and Vegetable Oils”的附录B。 作者是谁? Philip Wright 还是他的儿子 Sewall Wright 文体计量学的分析 为什么IV回归是有效的? 例1: Philip Wright的问题 Philip Wright关心的是那个时期的一个重要经济问题:即如何对诸如黄油,大豆油这样的动植物油和食用动物设置进口关税。在20世纪20年代,进口关税是美国主要的税收收入来源。而理解关税的经济效应的关键在于要有商品需求和供给曲线的定量估计。由前知供给弹性为价格上涨1%引起的供给量变化的百分率,而需求弹性为价格上涨1%引起的需求量的百分率变化。 例如具休考虑黄油的需求弹性估计问题: Wright的解决办法: 1。找到第三个变量,这个变量影响供给但不影响需求。这样,所有的均衡价格和均衡量对都落在这条稳定的需求曲线上,此时很容易估计出它的斜率。 2。可见,这第三个变量,也就是工具变量,它与价格相关(它使供给曲线移动,于是导致价格发生变化),但与u无关(需求曲线保持不变)。 3。Wright考虑了几个可能的工具变量;其中一个是天气。例如,某牧场的降雨量低于平均值会使牧草减少从而减少给定价格时黄油的产量(会使供给曲线向左移动而使均衡价格上升),因此牧场地区降雨量满足工具变量相关性的条件。但牧场地区降雨量对黄油的需求没有直接影响,因此牧场地区降雨量与ui的相关系数为零;也就是牧场地区降雨量满足工具变量外生性条件。 例2:班级模型对测试成缓的效应估计 工具变量回归提供了解决这一问题的一种思路。考虑下面的假想例子:由于夏天发生了地震,为了进行灾后修复工作,必须关闭某些加利福尼亚州的学校。而最靠近震中的地区受到的影响最严重。于是有学校关闭的地区需要把学生“挤在一起”,因此暂时扩大了班级规模。 这意味着到震中的距离与班级规模相关,故它满足工具变最相关性的条件但如果到震中的距离与其他影响学生成绩的因素无关(如学生是否还在学习英语),则由于它与误差项无关因此是外生的。于是到震中的距离这个工具变量可以用来避免遗漏变量偏差和估计班级规模对测试成绩的效应。 TSLS估计量的抽样分布 为了简单起见,我们仅考虑只有一个回归变量X和一个工具变量Z的情况。 在香烟需求中的应用 为了减少由于吸烟导致的疾病和死亡,以及这些生

文档评论(0)

yurixiang1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档