多用炉热处理渗碳工艺和应用研究.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多用炉热处理渗碳工艺和应用研究

多用炉热处理渗碳工艺和应用研究   摘 要:随着工业自动化的飞速发展,多用炉热处理渗碳工艺得到广泛应用。文章就曲柄销热处理工艺的试制过程进行研究,对设备和数据进行分析,探讨多用炉热处理渗碳工艺技术的加工效果达到理想水平的方法,为企业创造了效益。工件进行炉热处理的过程主要为渗碳、淬火后再进行磨削加工,同时要求磨削后产品硬度符合工艺及使用要求。文章笔者就曲柄销热处理工艺的试制过程作为论点,围绕试制过程中,曲柄销的扭矩、过盈量、硬度、耐磨度、韧性等情况,对炉热处理渗碳工艺应用进行分析。 关键词:多用炉;热处理工艺;渗碳工艺 一般而言,曲柄分为:左右曲柄、连杆以及曲柄销等几个部分。在对这些20CnMo材质的零件进行热处理时,主要进行渗碳淬火工作[1]。因为这些零部件比较小,所以要求的硬化层相对较浅。具体详情为:成品渗碳层要求为0.6~0.9mm,表面硬度要求56~64HRC;热处理工序的理想值区间为:0.8~1.0mm(514HV),其中,工件表面硬度理想值区间为:57~64HRC。在热处理过程中,0.8~1.0mm(514HV),工件表面硬度理想值范围为:57~64HRC。就以上所述情况来看,按照硬度值的参考数据可以知道,这些零件都属于浅层渗碳。 1 曲柄热处理工艺分析 为使曲柄热处理项目结果达到理想效果,就前文所述内容来看,重点需要注意以下问题: (1)提前了解加工设备规格,确保一炉工件的硬化层符合要求。 (2)对热处理后的工件情况进行预估,检测工件硬化层硬度梯度是否达标,为后期磨削工作打好基础[2]。 (3)当曲柄完成压合时,查看扭矩程度。曲炳孔的表面、心部的硬度以及硬化层深度均会对扭矩效果造成影响。 对曲轴进行渗碳处理主要是为了:强化工件表面硬度,为扭矩达标奠定基础;工件进行渗碳处理后,能优化产品疲劳强度;合理达标的硬度,能有效辅助其他零件的装配工作;由于曲柄较小,十分注重强度韧性,因而对工件硬化层、心部硬度以及残余奥氏体的规格要求会更严格。 2 渗碳分析 2.1 硬化层深度 渗碳层的深度,主要由炉热处理时的温度、时间以及碳势等因素来决定。渗碳层深度计算公式如下所示: 上述公式中,i为时间,T为绝对温度(K)。当渗碳温度为930℃时,A(T)值为0.670;当渗碳温度为960℃时,A(T)值为0.747。由此可见,渗碳层温度和碳在γ-Fe中的作用速度成正比。在温度保持稳定值时,渗层深度与渗碳时间成正比关系,由此可得出,温度与时间是决定渗层深度关键因素的结论。温度的变化也会使渗碳深度产生变化,因此在浅层渗碳过程中,必须准确的拿捏好渗碳温度[3]。否则,操作不当,温度过高,浅层渗碳中碳分子扩散速度快,作用时间短,渗碳深度有限,无法达到理想值。因此,需要合理降低温度,使碳分子扩散速度慢,获得更多便于操作的空间,减小成果与理想效果的偏差。为了让工件表面硬度达到最佳状态,炉器碳势高低必须严加控制。对于低合金渗碳钢,表面要求wc=0.75%-1.00%。虽然,渗碳层深度越深,产品的疲劳度和扭矩能力均能得到提升,但是会降低工件的冲击韧度。而且,工件心部材料会由于渗层的压迫导致发生变形。同时,渗层深度越深,扩散层相对会更深,因此工件心部含碳量超标的结果也不容忽视。经过淬火后,工件心部硬度以及强度都会提升,不过韧性低下,在进行曲柄压合时容易产生裂痕。 2.2 碳浓度梯度 硬化层硬度梯度,主要取决于渗碳层碳浓度梯度。碳势会决定渗碳层深度,工件表层成分波动,也会变得较为灵敏。因此,利用两段渗碳的方式,可以节省处理时间,保证渗碳质量,提高工作效率。不过,理论虽然如此,但在实际操作过程中,由于碳势气氛和工件表面碳浓度值并不统一,因此并不能使两段渗碳的工作优势体现出来。工件接受薄层渗碳时,渗碳时间均较短,因此气氛势能以及工件表面碳浓度无法达到平衡。面对这种情况。需要在热处理结束后,对工件进行磨削处理,但是如此一来,工件表面硬度又无法达标。渗碳层中碳浓度高,在淬火结束后表面将残留大量奥氏体,而磨削工作中产生的热能会催化奥氏体转化为马氏体,最终容易造成裂纹。据数据显示,碳在奥氏体中的溶解度(C)%=0.003T-1.47(850℃≤T≤950℃)。得知900℃碳的溶解度为1.23%,930℃为1.32%。对炉器碳势的控制,是为实现零件表面含碳量达到理想值,对于低合金渗碳钢,表面要求wc=0.75%-1.00%;渗碳过程中可以采用一段碳势(恒碳势),也可以采用两段碳势(变碳势)的渗碳工艺。由此看来,在渗碳期间,可以运用高回火温度或反复加热的方式,保证工件表面硬度符合要求的同时,最大化减小残余奥氏体的含量与内应力,为磨削工作打好基础。 2.3 心部硬度 渗碳零件的力学

文档评论(0)

docman126 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档