- 1、本文档共133页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第四章 无机材料的热性能
根据热力学第二定律可以导出: 式中:V0=摩尔容积, =体膨胀系数 =压缩系数 杜隆—珀替定律在高温时与实验结果很吻合。但在低温时,CV 的实验值并不是一个恒量,下面将要作详细讨论。 振动的总能量为: 当T趋于零时,CV逐渐减小,当T=0时,CV =0,这都是爱因斯坦模型与实验相符之处。但是在低温下,该式按指数快速下降,实验结果则缓慢得多。 原因是爱因斯坦采用了过于简化的假设,实际晶体中各原子的振动不是彼此独立地以单一的频率振动着的,原子振动间有着耦合作用,当温度很低时,这一效应尤其显著。 得到 式中, =德拜特征温度 =德拜比热函数 其中 优缺点: 德拜模型相比爱因斯坦模型有了很大的进步。 由于德拜把晶体看作连续介质,对于原子振动频率较高的部分不适用,故德拜模型对化合物的热容计算与实验不符。 低温下不能完全符合事实,晶体毕竟不是连续体。 对于金属类晶体,没有考虑自由电子对热容的贡献。 德拜模型解释不了超导现象。 在较高温度下,固体的热容具有加合性,即物质的摩尔热容等于构成该化合物各元素原子热容的总和,如下式: 式中,ni为化合物中元素i的原子数,Ci为化合物中元素i的摩尔热容。 对于多相复合材料,有如下公式: 式中,gi为第i种组成的质量分数,Ci为第i种组成的热容。 在这种受力条件下,质点振动的平均位置不在r0处,而要向右迁移,因此质点间的平均距离增加。温度愈高,振幅越大,质点在r0两侧的受力不对称情况越来越显著,平衡位置向右移动越多,相邻质点平均距离就增加的多,导致微观上晶胞参数增大,宏观上表现为晶体的膨胀。 根据实验还得出某些晶体热膨胀系数α与熔点间经验关系式 2、热膨胀和热容的关系 热膨胀是因为固体材料受热以后晶格振动加剧而引起的容积膨胀,而晶格振动的激发就是热运动能量的增大,升高单位温度时能量的增量也就是热容的定义。所以热膨胀系数显然与热容密切相关而有着相似的规律。 格律乃森从晶格振动理论导出体膨胀系数与热容间的关系式 体膨胀系数 线膨胀系数 r为格律乃森常数,K0为绝对零度时的体积弹性模量。对于一般材料来说,r值在1.5~2.5之间。 格律乃森定律指出,体膨胀与定容热容成正比,他们有相似的温度依赖关系,在低温下随温度升高急剧增大,而温度升高到一定程度则趋于平缓。 3、热膨胀和结构的关系 对于相同组成的物质,由于结构不同,膨胀系数也不同。通常结构紧密的晶体,膨胀系数都较大,而类似于无定形的玻璃,则往往有较小的膨胀系数 。 对于非等轴晶系的晶体,各晶轴方向的膨胀系数不等。 4、实际材料的热膨胀 1)一般材料的α~T关系类似于CV~T关系。 2)热膨胀系数:结构紧密地晶体结构疏松的材料。如石英的为12×10-6/K,而石英玻璃的为0.5×10-6/K。 3)有机高分子材料的热膨胀系数一般比金属的要大,在玻璃化转变温度区还会发生较大的变化。 4)由于金属、无机非金属和有机高分子材料的热膨胀系数大多互不相同,相互结合使用时可能出现一系列热应力所产生的问题,应尽可能选择a接近的材料。 5)多晶体或晶相与玻璃相组成的无机非金属材料(如陶瓷),由于各相的热膨胀系数不同,在烧成后的冷却过程中可能会产生内应力(我们实际应用中可以利用这一点,例如,选择釉层的热膨胀系数比坯体的小)。 5、多晶体和复合材料的热膨胀 假如有一复合材料,它的所有组成部分都是各向同性的,而且都是均匀地分布的。但是由于各组成的膨胀系数不同,因此各组成部分都存在着内应力: 由于整体的内应力之和为零,所以 对于仅为二相材料的情况有如下的近似式: 对于复合体中有多晶转变的组分时,因多晶转化有体积的不均匀变化而导致膨胀系数的不均匀变化。 对于复合体中不同相间或晶粒的不同方向上膨胀系数差别很大时,则内应力甚至会发展到使坯体产生微裂纹。因此有时会测得一个多晶聚集体或复合体出现热膨胀的滞后现象。 晶体内的微裂纹可以发生在晶粒内和晶界上,但最常见的还是在晶界上,晶界上应力的发展是与晶粒大小有关的。因而晶界裂纹和热膨胀系数滞后主
文档评论(0)