网站大量收购独家精品文档,联系QQ:2885784924

浅谈线性代数与空间解析几何..docVIP

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
浅谈线性代数与空间解析几何..doc

线性代数论文 题 目 班 级 学 生 学 号 二〇一五年月日 一.引言 在十七世纪, 笛卡尔及费马在几何空间中引入了坐标系, 从而在几何与代数间建立了一座桥梁, 用代数方法解决空间的几何问题, 产生了解析几何. 解析几何的产生, 可以说是数学发展史上的一次飞跃.恩格斯曾经这样评价[1]: 数学中的转折点是笛卡尔的变数, 有了变数, 运动进入了数学, 有了变数, 辩证法进入了数学, 有了变数, 微分和积分也就成了必要的了.从代数与几何的发展来看,线性代数与解析几何从来就是相互联系、相互促进的。解析几何中以代数为工具,解析几何中的很多概念、方法都是应用线性代数的知定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。 线性代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。从概念的内涵的外延来看,两门课之间存在着特殊与一般的关系,解析几何的一、二、三维空间是线性代数n维空间的特例,而线性空间的大量理论又是来源于一、二、三维几何空间的推广(抽象)。它们的关系可以归纳为“代数为几何提供研究方法,几何为代数提供直观背景”。=(),β=(),γ=();两个向量的向量积可以用行列式写为 ,它在几何上表示的是与α,β向量都垂直且成右手系的向量。 三个向量的混合积可以用行列式()=()=表示为图1平行 六面体。此行列式的几何解释是它的绝对值等于以它们3个向量为相邻棱所作的平行六面体的体积(如图1)。 图1 平行六面体 特别地,当(α,β,γ)=0时,由于平行六面体的体积为零。 所以 由此可得:过平面上两点(), ()的直线方程为 推广空间中有不在同一直线上的三点(xi,yi,zi)(i=1,2,3)的平面方程为 1.2 关于正交变换的几何意义 在二次型化为标准型时,可以采用可逆变换或正交变换,但由于可逆变换对应于仿射坐标系的变换,正交变换则对应于直角坐标系的变换,所以区别比较大。例如: : 通过可逆线性变换化成,即椭球面变成了球面。通过线性变换,化成,即椭球面变成了圆柱面。而正交变换保持向量长度和角度不变,因此几何图形不变。所以在讨论二次方程决定的图形时,必须用正交变换;如果只考虑它所属类型时,可以用可逆变换(当然包括正交变换)。 还应注意正交变换中: ①当正交阵的行列式表示为1时,是旋转变换; ②当正交阵的行列式为-1时,为镜面反射变换。 1.3 关于正交化的几何解释 线性无关的向量组可以由Schmidt正交化得到与其等价的正交组,它的几何解释为,如果有3个线性无关的向量则可以通过Schmidt正交化得到相应的3个正交向量。这里, , ,其中γ2为α2在β1上的投影向量;γ3为α3在β1、β2所确定的平面上的垂直投影向量。 2 向量组线性相关(无关)与几何中向量共面、共线之间的关系[3] 若α,β,γ是三维空间的向量,则:α线性相关;α,β线性相关;α,β,γ线性相关分别对应于几何直观的α为零向量;α,β共线;α,β,γ共面。因此,一维空间的基是空间中任意一个非零向量;二维空间的基是空间中两个不共线向量;三维空间的基是空间中3个不共面的向量组成的。 例.1 在三维空间中有向量,OA =(),OB =(),OC =(),那么,A,B,C共线的充分必要条件是什么? 解:过A,B两点的直线方程为显然,当且仅当C点满足此方程时,A,B,C共线,即存在t,使得OC =(1-t)OA +tOB ,于是,A,B,C共线. 当且仅当OA ,OB ,OC 中某一向量可以由其余向量线性表示,而且表出系数之和为1。 3 线性方程组与直线、平面的位置关系 空间直线、平面的位置关系为线性方程组的结构理论提供了直观的几何解释,同样线性代数中的线性方程组的结构理论对深刻领会直线、平面的位置关系起到重要作用。[4] 例.2已知平面上有三条不同的直线,它们的直线方程分别为 ,试证这3条直线交于一点的充分必要条件为a+b+c=0。[5] 证明:必要性,设3条直线l1, l2, l3相交于一点. 则线性方程组有唯一解, 故系数矩阵A=与增广矩阵的秩均为2,于是||=0,由于 但是(a-b)2+(b-c)2+(c-a)2≠0,∴a+b+c=0 充分性:由a+b+c=0,则从必要性的证明可知: |=0,故:秩()3。 由于, 故: ,于是, 。 因此线性方程组有唯一解,即,3条直线l1, l

您可能关注的文档

文档评论(0)

czy2014 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档