- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
投资学题库Chap011
Chapter 11
Managing Bond Portfolios
Duration can be thought of as a weighted average of the ‘maturities’ of the cash flows paid to holders of the perpetuity, where the weight for each cash flow is equal to the present value of that cash flow divided by the total present value of all cash flows. For cash flows in the distant future, present value approaches zero (i.e., the weight becomes very small) so that these distant cash flows have little impact, and eventually, virtually no impact on the weighted average.
A low coupon, long maturity bond will have the highest duration and will, therefore, produce the largest price change when interest rates change.
A rate anticipation swap should work. The trade would be to long the corporate bonds and short the treasuries. A relative gain will be realized when rate spreads return to normal.
-25 = -(D/1.06)x.0025x1050…solving for D = 10.09
d.
The increase will be larger than the decrease in price.
While it is true that short-term rates are more volatile than long-term rates, the longer duration of the longer-term bonds makes their rates of return more volatile. The higher duration magnifies the sensitivity to interest-rate savings. Thus, it can be true that rates of short-term bonds are more volatile, but the prices of long-term bonds are more volatile.
Computation of duration:
YTM = 6%
(1) (2) (3) (4) (5) Time until Payment (Years) Payment Payment Discounted at 6% Weight Column (1)
×
Column (4) 1 60 56.60 0.0566 0.0566 2 60 53.40 0.0534 0.1068 3 1060 890.00 0.8900 2.6700 Column Sum: 1000.00 1.0000 2.8334
Duration = 2.833 years
YTM = 10%
(1) (2) (3) (4) (5) Time until Payment (Years) Payment Payment Discounted at 10% Weight Column (1)
×
Column (4) 1 60 54.55 0.0606 0.0606 2 60 49.59 0.0551 0.1101 3 1060 796.39 0.8844 2.6531 Column Sum: 900.53 1.0000 2.8238
Duration = 2.824 years, which is less than the duration at the YTM of 6%
The percentage bond price change is:
– Duration ( or a 3.27% decline
Comp
文档评论(0)