基于直方图的二值化算法.docx

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于直方图的二值化算法

图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。 在这些庞大的分类方法中,基于直方图的全局二值算法占有了绝对的市场份额,这些算法都从不同的科学层次提出了各自的实施方案,并且这类方法都有着一些共同的特点: 1、简单; 2、算法容易实现;?3、执行速度快。 本文摘取了若干种这类方法进行了介绍。? 一:灰度平局值值法: 1、描述:即使用整幅图像的灰度平均值作为二值化的阈值,一般该方法可作为其他方法的初始猜想值。 2、原理: ?   3、实现代码: public static int GetMeanThreshold(int[] HistGram) { int Sum = 0, Amount = 0; for (int Y = 0; Y 256; Y++) { Amount += HistGram[Y]; Sum += Y * HistGram[Y]; } return Sum / Amount; } 二、百分比阈值(P-Tile法)? 1、描述?Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。 2、该原理比较简单,直接以代码实现。 /// summary /// 百分比阈值 /// /summary /// param name=HistGram灰度图像的直方图/param /// param name=Tile背景在图像中所占的面积百分比/param /// returns/returns public static int GetPTileThreshold(int[] HistGram, int Tile = 50) { int Y, Amount = 0, Sum = 0; for (Y = 0; Y 256; Y++) Amount += HistGram[Y]; // 像素总数 for (Y = 0; Y 256; Y++) { Sum = Sum + HistGram[Y]; if (Sum = Amount * Tile / 100) return Y; } return -1; }?三、基于谷底最小值的阈值??1、描述: 此方法实用于具有明显双峰直方图的图像,其寻找双峰的谷底作为阈值,但是该方法不一定能获得阈值,对于那些具有平坦的直方图或单峰图像,该方法不合适。 2、实现过程:  该函数的实现是一个迭代的过程,每次处理前对直方图数据进行判断,看其是否已经是一个双峰的直方图,如果不是,则对直方图数据进行半径为1(窗口大小为3)的平滑,如果迭代了一定的数量比如1000次后仍未获得一个双峰的直方图,则函数执行失败,如成功获得,则最终阈值取两个双峰之间的谷底值作为阈值。 注意在编码过程中,平滑的处理需要当前像素之前的信息,因此需要对平滑前的数据进行一个备份。另外,首数据类型精度限制,不应用整形的直方图数据,必须转换为浮点类型数据来进行处理,否则得不到正确的结果。 该算法相关参考论文如下:  J. M. S. Prewitt and M. L. Mendelsohn, The analysis of cell images, innnals of the New York Academy of Sciences, vol. 128, pp. 1035-1053, 1966. C. A. Glasbey, An analysis of histogram-based thresholding algorithms, CVGIP: Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993. 3、实现代码:? public static int GetMinimumThreshold(int[] HistGram) { int Y, Iter = 0; double[] HistGramC = new double[256]; // 基于精度问题,一定要用浮点数来处理,否则得不到正确的结果 double[] HistGramCC = new double[256]; // 求均值的过程会破坏前面的数据,因此需要两份数据 for (Y = 0; Y 256; Y

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档