mvtobit使用说明.docx

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
mvtobit使用说明

-------------------------------------------------------------------------------help for mvtobit Mikkel Barslund (mikkelbarslund@)-------------------------------------------------------------------------------Multivariate tobit models estimated by maximum simulated likelihood mvtobit equation1 equation2 ... equationM [weight] [if exp] [in range] [, draws(#) an seed(#) beta0 atrho0(matrix_name) prefix(string) burn(integer) random hrandom shuffle adoonly primes(matrix_name) init(matrix_name) robust cluster(varname) constraints(numlist) level(#) maximize_options ] where each equation is specified as ( [eqname:] depvar [=] [varlist] [, noconstant] ) by ... : may be used with mvtobit; see help by. pweights, fweights, aweights, and iweights are allowed; see help weights. mvtobit is likely to produce a series of (not concave) statements in the beginning of the estimation process. It is recommended to specify the difficult option; see help maximize. mvtobit shares the features of all estimation commands; see help est. mvtobit typed without arguments redisplays the last estimates. The level option may be used. mvtobit requires mdraws to be installed. Note: much code in this routine is hacked from or inspired by Cappellari and Jenkins mvprobit and mdraws commands (see mvprobit and mdraws if installed). This in particular applies to the help and syntax handling files. mdraws must be installed for mvtobit to work. The shuffle option requires installation of _gclsort. Both are available from SSC. Using Stata version 9 or above? Take a look at cmp and Roodman (2009).Description mvtobit estimates M-equation tobit models (including bivariate models), by the method of maximum simulated likelihood (MSL). Bivariate tobit models are estimated without simulation (see also Daniel Lawsons bitobit if installed). A limitation is that only models left-censored at zero can be estimated, i.e. y(i) = max[xb(i)+e(i),0] where e is M-variate normally distributed. Along with coefficients for each

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档