网站大量收购独家精品文档,联系QQ:2885784924

液压泵轴承故障诊断神经网络方法研究.doc

液压泵轴承故障诊断神经网络方法研究.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
液压泵轴承故障诊断的神经网络方法研究   北京航空航天大学? 王少萍   摘要:研究了基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。   关键词:液压泵;轴承故障;故障诊断;集成BP网络    在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,而液压泵是液压 系统的动力源,因此对液压泵的状态监控与故障诊断尤为重要。轴承故障是液压泵常见的故 障模式之一,由于轴承故障所引起的附加振动相对于液压泵的固有振动较弱,因而很难把故 障信息从信号中分离开来。到目前为止,对液压泵轴承故障的故障诊断尚缺少十分有效的方 法。本文提出在频域和倒频域进行特征提取,旨在解决轴承特征提取困难的问题并利用集成 BP网络解决多故障诊断与识别和鲁棒性问题。 1 液压泵轴承故障的特征提取   对于机械系统而言,如有故障则一定会引起系统的附加振动。振动信号是动态信号,它包含 的信息丰富,很适合进行故障诊断。但是如果附加振动信号由于固有信号或外界干扰对故障 信号的干扰很大而淹没,那么如何从振动信号中提取有用信号就显得十分关键。   根据摩擦学理论,当轴承流动面的内环、外环滚道及滚柱上出现一处损伤,滚道的表面平滑 受到破坏,每当滚子滚过损伤点,都会产生一次振动。假设轴承零件为刚体,不考虑接触变 形的影响,滚子沿滚道为纯滚,则有如下损伤振动频率:   当内滚道有一处损伤时,其振动脉冲特征频率为: fI=frZ(1+dcosα/D)/2  (1)   当外滚道有一处损伤时,其振动脉冲频率为: fo=frZ(1-dcosα/D)/2  (2)   当滚柱上有一处损伤时,其振动脉冲特征频率为: fR=frD(1-d2cosα/D2)/d  (3) 其中:fr-内环转速频率;D-轴承的节圆直径;d-滚柱的直径;α- 接触角;Z-滚柱个数。   为了克服轴承故障信号较弱且容易被液压泵固有振动淹没的困难,选用以下抗干扰能力较强 的特征作为故障诊断特征参数。   (1)振动的平均能量特征   设在液压泵泵体上测得的振动加速信号为:   a(t)={a1(t), a2(t),..., an(t)}   它是故障信号以泵体传输后的信号。根据统计学理论,振动的均方根反映振动的时域信息:   特征参数有它代表振动信号的有效值,反映振动的平均能量。   (2)振动信号的峰值特征 Pp=max{a(t)}  (5)   它是反映振动信号中周期性脉动的特征量。   (3)倒谱包络特征   设f(t)为故障激励信号,h(t)为传输通道的脉冲响应。它们相应的Fourier变 换有如下关系:   对(6)式进行如下变换: 式中,τ称为倒频率;(τ)为倒频谱。由上式可以 看出故障激励信号特性和传递通道的特性被分离开来了,而一般情况下故障激励信号与传递通道信号占据不同的倒频区段,这样可以突出故障振动信号的特性。   Hilbert变换用于信号分析中求时域信号的包络,以达到对功率谱进行平滑从而突出故 障信息。定义信号:为最佳包络。倒谱包络模型实质是对从传感器获得的信号进行倒频谱分析,然后对其倒频谱信号进行包络提取,从而双重性地突出了故障信息,为信噪比小的故障特征的提取提供了依据。 2 集成BP网络进行故障诊断的原理   神经网络的组织结构是由求解问题的领域特征决定的。由于故障诊断系统的复杂性,将神经网络应用于障诊断系统的设计中,将是大规模神经网络的组织和学习问题。为了减少工作的复杂性,减少网络的学习时间,本文将故障诊断知识集合分解为几个逻辑上独立的子集合,每个子集合再分解为若干规则子集,然后根据规则子集来组织网络。每 个规则子集是一个逻辑上独立的子网络的映射,规则子集间的联系,通过子网络的权系矩阵表示。各个子网络独立地运用BP学习算法分别进行学习训练。由于分解后的子网络比原来的网络规模小得多且问题局部化了,从而使训练时间大为减少。利用集成BP网络进行液压泵轴承故障诊断的信息处理能力源于神经元的非线性机理特性和BP算法,如图1所示。 图1 BP网络故障诊断示意图   图2中每一个子网络均为一个BP网络,各个子网络由BP算法各自学习,学习后的结果由控制网络集成。BP网络的学习算法如下: 图2 集成BP网络示意图   把选取的每一个特征参数(包括能量特征,幅值特征和倒谱包络特征)x的值映像到神经网络输入输出层的单个节点上,并对其进行正则处理: xi=0.8(x-xmin)/(xmax-xmin)+0.1   (8)   式(8)把特征参数正则到(0.1,0.9)之间的目的是避免Sigmo

您可能关注的文档

文档评论(0)

***** + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档