基于支持向量机的线条图像语义主题自动发现方法基于支持向量机的线条图像语义主题自动发现方法.pdf

基于支持向量机的线条图像语义主题自动发现方法基于支持向量机的线条图像语义主题自动发现方法.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于支持向量机的线条图像语义主题自动发现方法基于支持向量机的线条图像语义主题自动发现方法

Journal of Image and Signal Processing 图像与信号处理, 2014, 3, 78-85 Published Online July 2014 in Hans. /journal/jisp /10.12677/jisp.2014.33011 Automatic Semantic Topic Discovery Approach of the Line Image Based on Support Vector Machine Cong Jin, Jin’an Liu School of Computer Science, Central China Normal University, Wuhan Email: jinc26@ st th th Received: May 21 , 2014; revised: May 26 , 2014; accepted: Jun. 9 , 2014 Copyright © 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/ Abstract A semantic topic discovery approach of the line image, based on support vector machine, has been proposed in this paper. Firstly, the training images are divided into non-overlapping sub- blocks with same size. After clustering image sub-blocks, we obtained class set generated by cluster cen- ters, and extracted all nouns from text annotation of each training image in order to obtain a key- word set. Secondly, the un-label testing image is also divided into non-overlapping sub-blocks as same as training images, we calculated the correlation between the sub-block and each keyword, and a keywords set for each sub-block may be obtained. Finally, the number of each keyword ap- pearing in the each sub-block is calculated, we let the keywords with maximum to occurrences number be the semantic topics of the line image. The experimental results confirm that proposed automatic semantic topic discovery approach for line image is effective and has good perfor- mance. Keywords Digital Image, Semantic Topic Discovery, Text Clustering, Support Vector Machine 基于支持向量机的线条图像语义主题 自动发现方法

文档评论(0)

vshoulrengb3 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档