- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于支持向量机的线条图像语义主题自动发现方法基于支持向量机的线条图像语义主题自动发现方法
Journal of Image and Signal Processing 图像与信号处理, 2014, 3, 78-85
Published Online July 2014 in Hans. /journal/jisp
/10.12677/jisp.2014.33011
Automatic Semantic Topic Discovery
Approach of the Line Image Based on
Support Vector Machine
Cong Jin, Jin’an Liu
School of Computer Science, Central China Normal University, Wuhan
Email: jinc26@
st th th
Received: May 21 , 2014; revised: May 26 , 2014; accepted: Jun. 9 , 2014
Copyright © 2014 by authors and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
/licenses/by/4.0/
Abstract
A semantic topic discovery approach of the line image, based on support vector machine, has been
proposed in this paper. Firstly, the training images are divided into non-overlapping sub- blocks
with same size. After clustering image sub-blocks, we obtained class set generated by cluster cen-
ters, and extracted all nouns from text annotation of each training image in order to obtain a key-
word set. Secondly, the un-label testing image is also divided into non-overlapping sub-blocks as
same as training images, we calculated the correlation between the sub-block and each keyword,
and a keywords set for each sub-block may be obtained. Finally, the number of each keyword ap-
pearing in the each sub-block is calculated, we let the keywords with maximum to occurrences
number be the semantic topics of the line image. The experimental results confirm that proposed
automatic semantic topic discovery approach for line image is effective and has good perfor-
mance.
Keywords
Digital Image, Semantic Topic Discovery, Text Clustering, Support Vector Machine
基于支持向量机的线条图像语义主题
自动发现方法
您可能关注的文档
- 城市轨道交通可持续发展的思考城市轨道交通可持续发展的思考.pdf
- 城市绿色空间研究内容与展望城市绿色空间研究内容与展望.pdf
- 城市轨道交通规划编制和评审要点城市轨道交通规划编制和评审要点.pdf
- 城市间多种交通方式通行经济分析城市间多种交通方式通行经济分析.pdf
- 城市高架直升机场设计城市高架直升机场设计.doc
- 城轨静调电源及stinger柜技术说明书_德飞电气城轨静调电源及stinger柜技术说明书_德飞电气.pdf
- 城镇教育设施用地布局规划的基本原则和方法城镇教育设施用地布局规划的基本原则和方法.ppt
- 城镇化进程中的基本公共服务均等化试卷88分城镇化进程中的基本公共服务均等化试卷88分.doc
- 城镇土地评价中主成分分析法的应用城镇土地评价中主成分分析法的应用.pdf
- 城际城乡客运管理处城际城乡客运管理处.doc
文档评论(0)