- 1、本文档共31页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
主成分分析4,双语
zf zf Chapter 5 Principal Components Analysis (PCA) Presentation Outline w What is PCA? w Geometrical approach to PCA w Analytical approach to PCA w Properties of PCA w How to determine the number of PC? w How to interpret the PC? w Use of PC scores 5.1 reasons for using principal components analysis Too Many Variables Stone use 1929一1938 data in USA, and receive 17 variables which describe income-pay. He used principle component analysis and got three new variables F1、F2、F3. F1, total income;F2,total income increase ratio;F3,economy increase or decrease. These new variable can use three variables (I、?I、t )which can be measured directly. Solutions ?? Eliminate some redundant variables. – May lose important information that was uniquely reflected in the eliminated variables. ?? Create composite scores from variables (sum or average). – Lost variability among the variables – Multiple scale scores may still be collinear ?? Create weighted linear combinations of variables while retaining most of the variability in the data. – Fewer variables; little or no lost variation – No collinear scales. An Easy Choice To retain most of the information in the data while reducing the number of variables you must deal with, try principal components analysis. ?? Most of the variability in the original data can be retained. but… ?? Components may not be directly interpretable. What is PCA?(什么是主成分分析) PCA is a technique for forming new variables which are linear composites of the original variables. The new variables are called principal components(PRIN’s). The maximum number of PRIN’s that can be formed is equal to the number of original variables. Usually the first few PRIN’s represent most of the information in the original variables and can replace the original variables and hence achieve data reduction, which is the main objective of PCA The PRIN’s are uncorrelated among themselves and can
您可能关注的文档
最近下载
- 闽教版小学四年级下册英语期中试卷附答案.docx VIP
- 心电图基本常识共107张PPT.pptx VIP
- 《工程热力学》全册教学课件(共14章完整版).pptx
- 汽车租赁服务组织实施方案.docx VIP
- 电工作业考试(防爆电气)习题库(第2部分).pdf
- 苏教版五年级数学上册(全册)教案.pdf VIP
- 《有机化学》中国农业出版社 课后习题答案 .pdf
- Unit5 Whose dog is it Part B Let's learn (教案)-2021-2022学年英语五年级下册.docx
- 【开题报告】中小学跨学科综合教学实践研究 .docx
- 2016全国统一市政工程预算定额编制说明.doc VIP
文档评论(0)