网站大量收购独家精品文档,联系QQ:2885784924

ASReml软件讲义 ASReml workshop.ppt

  1. 1、本文档共86页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ASReml软件讲义 ASReml workshop

ARMS Fusion 2007 ASReml Workshop Harry Wu UPSC, Swedish University of Agriculture Science, Sweden CSIRO Plant Industry, Canberra, Australia Workshop Outline Linear model Mixed linear model Breeding values ASReml and ConTEXT Primer Example of full-sib mating Example of diallel mating Row-Column design Longitudinal data Spatial analysis 1. What Is a Linear Model? Put Experiment into a Linear Model Put the Linear Model into Matrix Useful Matrix Operations Transpose Multiplication Trace Determinant Inverse Direct sum ( ) Direct product ( ) 2. What Is Mixed Linear Model A combination of fixed effects and random effects. – Fixed: where there are different populations (levels), each with its own mean. We are mostly interested in estimating the means. – Random: the levels are random samples from one population. We are interested in the variances (although we might want prediction for the levels). Very powerful at dealing with unbalanced data What are some fixed and random effects? An Example of Mixed Linear Model Mixed Linear Model Solution of Mixed Linear Model Traditional Mixed Linear Model in Tree Breeding Complex Mixed Linear Model Solution of Mixed Linear Model REML ASReml Likelihood Ratio Test Fixed effects must be the same in both models Hierarchical models only For single variances 2 * D Log Likelihood ~ where D Log Likelihood is the LL difference with and without the effect (Section 2.5) For multiple variances For correlations against 0 against 1 Other Model Comparators Non-hierarchical models Akaike Information Criterion – Minimise AIC = -2*LogL+2p (p=no. vc’s) Bayes Information Criterion – Minimise BIC = -2*LogL+p*log(dfe) 3. Basic Concept of Breeding Value Basic Concept of Breeding Value Basic Concept of Breeding Value Basic Concept of Breeding Value Basic Concept of Breeding Value 4. ASReml primer ConTEXT Primer 1. Install ConText using ContextSetup.exe 2. Copy ASREML.chl to the c:/program files/context/highlight

文档评论(0)

ctuorn0371 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档