网站大量收购闲置独家精品文档,联系QQ:2885784924

Flexible Neuro Fuzzy Systems英文电子书.pdf

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
554 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 Flexible Neuro-Fuzzy Systems Leszek Rutkowski, Senior Member, IEEE, and Krzysztof Cpalka Abstract—In this paper, we derive new neuro-fuzzy structures It should be emphasized that formulas (1) and (2) do called flexible neuro-fuzzy inference systems or FLEXNFIS. not satisfy the conditions of fuzzy implication formu- Based on the input–output data, we learn not only the parameters lated by Fodor [11]. We refer to (1) and (2) as to “engi- of the membership functions but also the type of the systems (Mamdani or logical). Moreover, we introduce: 1) softness to neering implications” (see Mendel [34], [35]) contrary to fuzzy implication operators, to aggregation of rules and to the fuzzy implications satisfying the axiomatic definition connectives of antecedents; 2) certainty weights to aggregation (see Definition 1). of rules and to connectives of antecedents; and 3) parameterized The aggregation is performed by an application of families of T-norms and S-norms to fuzzy implication operators, S-norm to aggregation of rules and to connectives of antecedents. Our approach introduces more flexibility to the structure and design of neuro-fuzzy systems. Through computer simulations, we show (4) that Mamdani-type systems are more suitable to approximation e.g., problems, whereas logical-type systems may be preferred for classification problems.

您可能关注的文档

文档评论(0)

网游加速器 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档