电力系统短期负荷预测方法的研究.doc

  1. 1、本文档共73页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
电力系统短期负荷预测方法的研究

郑州大学 硕士学位论文 电力系统短期负荷预测方法的研究 姓名:张德玲 申请学位级别:硕士 专业:电力系统及其自动化 导教师:陈根永郑州人学丁.学《 1.?论文 Abstract Short-Term Load Forecasting{STLF) is one of the most important contents of running and dispatching of power system. It can be economic and reasonable to arrange start and stop of the Generator in wire net, reduce otiose revolve the storage capacity. It can be reasonable to arrange Generator the maintain plan, assurance normal produce and live of society, raise the economic efficiency and social efficiency of Electric power enterprise; Under the situation that the energy is increasingly lacking currently, the national energy development strategy requests gradually to reduce energy consumption of the unit GDP, the production and consumption of electric power increasingly go to maiket , short-term toad forecasting result become importance basis of drawing up the electric power market bargain plan. So these put short-term load forecasting forward a higher request. This text analyze the present condition and Various methods and mathematics model of the short-term load forecasting. Considering the fact, the specific Comparison of the commercial electricity and life electricity of residents of the recent years is more and more big in the all society electricity, these loads are subjected to influence by load day type and weather and etc; Moreover, the region load level isnt all too high generally, and the load constitute is simple generally, so these loads are also effected easily by toad day type and weather factors. According to some area fact ’this text takes day type and weather as the main influence factors of the region short-term load forecasting. Because of indetermination characteristic of the some influence factora, this text takes fuzzy method to process data. The normal calculate way cant reflect goodly weather condition and other outside factors to the influence for load forecasting, in recent years,, the artificial neural networic method etc have height nonlinea

文档评论(0)

yurixiang1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档