网站大量收购闲置独家精品文档,联系QQ:2885784924

基于模糊神经网络阶逆系统的发酵过程多变量解耦控制英文_.doc

基于模糊神经网络阶逆系统的发酵过程多变量解耦控制英文_.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于模糊神经网络阶逆系统的发酵过程多变量解耦控制英文_

Article ID: 1000?8152(2010)02?0188?05 Multivariable decoupling control based on fuzzy-neural network αth-order inverse system in fermentation process SUN Yu-kun, WANG Bo, JI Xiao-fu, HUANG Yong-hong (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China) Abstract: This paper proposes a nonlinear multivariable decoupling control strategy based on fuzzy-neural network αth-order inverse method that combines inverse system theory with fuzzy-neural network for fermentation process. A nonlinear inverse model is developed based on the reversibility analysis of the process model. A fuzzy-neural network αth-order inverse system is then constructed, which is cascaded with this process to transform the original nonlinear system to a pseudo-linear system. Finally, an expert controller is used to closed-loop synthesis. The effectiveness of the presented method is illustrated by a simulation experiment. Key words: bioprocesses; fuzzy-neural network; inverse system method; decoupling control; expert controller CLC number: TP273 Document code: A ??%‰???%α??fi?%Q???fi%????? ???, I ?, ???, ??? (??$? ????I???, ?? ?? 212013) ??: ??fi?{??%‰???%???, %$~???%‰???%α??fi?%Q???????{?. ???ffi????%??L, ??%‰???%%?Q???%????%?, ????fi%%‰??α??fi ??Q????‰??}???fi?, ?????}????????о?????. ????$?, %$%?? ??{?????Q???%?%???????%%%?, ?$??%???, t?f???fi?????{? ?????%???%???%%K%??%?A, %????, %???. }??: RKt???; %‰???%; ?fi?{?; ????; ?}??? 1 Introduction Bioprocess is a nonlinear multivariable coupling system for involving complex factors such as micro- bial cells growth, metabolism and so on[1] . Decou- pling control of this nonlinear multivariable system is a research topic of both theoretical and practical im- portance. Among these nonlinear system theories, the inverse system method is verified to be powerful[2,3] . Unfortunately, this method is based on an exact mathe- matical model of the plant, which is impossible to ob- tain in biop

文档评论(0)

zhuwenmeijiale + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7065136142000003

1亿VIP精品文档

相关文档