- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
挖掘数据流任意滑动时间窗口内频繁模式-CiteSeerX.PDF
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@
Journal of Software , Vol.19, No.10, October 2008, pp.2585−2596
DOI: 10.3724/SP.J.1001.2008.02585 Tel/Fax: +86-10
© 2008 by Journal of Software . All rights reserved.
∗
挖掘数据流任意滑动时间窗口内频繁模式
李国徽, 陈 辉+
(华中科技大学 计算机科学与技术学院,湖北 武汉 430074)
Mining the Frequent Patterns in an Arbitrary Sliding Window over Online Data Streams
LI Guo-Hui, CHEN Hui+
(School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
+ Corresponding author: E-mail: chen_hui@
Li GH, Chen H. Mining the frequent patterns in an arbitrary sliding window over online data streams.
Journal of Software, 2008,19(10):2585−2596. /1000-9825/19/2585.htm
Abstract : Because of the fluidity and continuity of data stream, the knowledge embedded in stream data is most
likely to be changed as time goes by. Thus, in most data stream applications, people are more interested in the
information of the recent transactions than that of the old. This paper proposes a method for mining the frequent
patterns in an arbitrary sliding window of data streams. As data stream flows, the contents of the data stream are
captured with a compact prefix-tree by scanning the stream only once. And the obsolete and infrequent items are
deleted by periodically pruning the tree. To differentiate the patterns of recently generated transactions from those
of historic transactions, a time decaying model is also applied. Extensive simulations are conducted and the
experimental results show that the proposed method is efficient and scalable, and also superior to other analogous
algorithms.
Key words:
文档评论(0)