- 1、本文档共14页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
1998 Special Issue A tennis serve and upswing learning robot…
Neural
Networks
PERGAMON Neural Networks 11 (1998) 1331–1344
1998 Special Issue
A tennis serve and upswing learning robot based on bi-directional theory
Hiroyuki Miyamoto 1,*, Mitsuo Kawato2
1
Japan Science and Technology Corporation, Kawato Dynamic Brain Project, Kyoto, Japan
2ATR Human Information Processing Research Laboratory, Kyoto, Japan
Received and accepted 30 April 1998
Abstract
We experimented on task-level robot learning based on bi-directional theory. The via-point representation was used for ‘learning by
watching’. In our previous work, we had a robot learn kendama (a Japanese game) in order to demonstrate a single simple task. Our approach
can be applied to a wide variety of motor behavior. However, some difficulties still remain. In this paper, we address two problems: (1) how
to attain a final goal of complex movement when it consists of a sequence of subgoals, and (2) how to adapt to changes in behavior and the
environment. To examine how to solve these problems, we propose two methods: (1) selecting the proper via-points for a control variable for
each subgoal, and (2) re-estimating the relation between the via-points and the task during learning without conducting extra trials. We
adopted a tennis serve and a pendulum upswing for our complicated tasks. 1998 Elsevier Science Ltd. All rights reserved.
Keywords: Bi-directional theory; Learning by watching; Task-lev
文档评论(0)