网站大量收购独家精品文档,联系QQ:2885784924

An improved LCAO-MO-SCF π-electron method.pdfVIP

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
An improved LCAO-MO-SCF π-electron method

To Blank or Not to Blank? A Comparison of the Effects of Disclosure Limitation Methods on Nonlinear Regression Estimates Sandra Lechner and Winfried Pohlmeier Department of Economics, Box D124, University of Konstanz 78457 Konstanz, Germany winfried.pohlmeier@uni-konstanz.de Phone ++49-7531-88-2660, Fax -4450 Abstract. Statistical disclosure limitation is widely used by data col- lecting institutions to provide safe individual data. However, the choice of the disclosure limitation method severely affects the quality of the data and limit their use for empirical research. In particular, estimators for nonlinear models based on data which are masked by standard dis- closure limitation techniques such as blanking or noise addition lead to inconsistent parameter estimates. This paper investigates to what ex- tent appropriate econometric techniques can obtain parameter estimates of the true data generating process, if the data are masked by noise ad- dition or blanking. Comparing three different estimators – calibration method, the SIMEX method and a semiparametric sample selectivity estimator – we produce Monte-Carlo evidence on how the reduction of data quality can be minimized by masking. Keywords: disclosure limitation, blanking, semi-parametric selection models, errors in variables in nonlinear models 1 Introduction Over the last decades empirical research in the social sciences showed an in- creasing interest in the analysis of microdata. While the focus was originally more on individual and household data, a gr

文档评论(0)

baoyue + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档