- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于聚类分析的我国各地GDP及影响因素分析
题 目 基于聚类分析的我国各地GDP及影响因素分析
学生姓名 学号
所在学院 数学与计算机科学学院
专业班级 数学与应用数学专业2011级数应1班
指导教师
基于聚类分析的我国各地GDP及影响因素分析
(陕西理工学院数学与计算机科学学院数学与应用数学1101班,陕西 汉中)
指导教师:
[摘要]:利用SPSS软件对全国30个省、直辖市、自治区的主要经济指标进行聚类分析,将其经济分成按照不同的分析方法可分为不同的几种类型.通过这种方法对全国各省进行经济分类.本文选取了7项经济指标作为决定经济类型的影响因素,各项数据均来自2010年国家统计年鉴.分析结果表明:北京市和上海市稳居第一类经济类型;江苏省和、山东省、广东省和浙江多数处于第四类经济;其他25个省、直辖市、自治区基本在第二类型与第三类型变化.
[关键词]:SPSS软件;聚类分析;经济类型;GDP
引言
在当今欧美主导的经济发展理论下,衡量一个国家的综合实力看的不仅是国家的军事实力、国家影响力,而更看重国家的经济实力,而GDP代表一国或一个地区所有常住单位和个人在一定时期内全部生产活动的最终成果,是当期新创造财富的价值总量,它是一个国家经济实力的最好体现,具有国际可比性,是联合国国民经济核算体系(SNA)中最重要的总量指标,为世界各国广泛使用并用于国际比较.众所周知2008年我国GDP跃居世界第三位,是仅次于美国、日本的第三大经济国,而2009年在金融危机的影响下我国GDP稳中求进,依然保持着9.0%的增长态势.提高GDP已经成为经济发展的潮流,利用国家的各种有限资源,在最大程度上发挥资源的利用率,推动经济的发展是势在必行的,因为资源一直在减少,而人口一直在增加,要保持经济的增长就必要抓住主要因素,提高GDP.但是如果研究我国整体的GDP的意义就不大了,所以我选择了对中国各地的GDP进行研究.为了我国能够均衡发展.
2.预备知识
2.1聚类分析的概述
聚类分析是研究(样品或变量)分析问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合.严格的数学定义是较麻烦的,在不同问题中类的定义是不同的.
为了将样品(或变量)进行分类,就需要研究样品之间的关系.目前用得最多的方法有两个:一种方法是用相似系数,性质越接近的样品.另一种方法是将一个样品看作p维空间的一个点,并在空间定义距离,距离越近的点归为一类,距离越远的点归为不同的类. 聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里.分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差.(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法.这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类.(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度.(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法. 聚类方法有两个显著的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据.几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类.但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同.结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息.为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式.对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界).最终,将需要经验可信度通过序列比较来指导聚类解释. 第二个局限由线性相关产生.上述的所有聚类方法分析的仅是简单的一对一的关系.因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点. 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法.传统的统计聚类分析方法包
文档评论(0)