- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
关于企业的信用评价
企业的信用评价
信用评价概述
在美国和欧洲,企业信用评价引起了学术界和实务界极大的关注,判别方法和模型层出不穷,但迄今为止还没有公认的、有效的和统一的方法。企业信用评价之所以引起极大的关注,之所以有大量的方法和模型得到开发和利用,原因就在于其具有不可忽视的重要性:
????一、作为早期警告系统,判别方法和模型可以告诫管理者企业是否在变坏,是否应采取有针对性的措施防止失败;
????二、判别方法和模型可以用来帮助金融机构的决策者对企业作出评价和选择,因为这些模型和贷款决策模型相通。虽然贷款决策问题和企业信用问题不能等同,但贷款人可以卓有成效地利用企业信用等级判别模型评价贷款的可行性。
????西方银行在多年的实践中逐渐形成了一整套衡量标准,即通常所称的贷款审查“6C”原则,“6C”即:(1)品德(Character)(2)能力(Capacity)(3)资本(Capital)(4)担保(Collateral)(5)经营环境(Condition)(6)事业的连续性(Continuity)或LAPP原则即流动性(Liquidity)、活动性(Activity)、盈利性(Profitability)、潜力(Potentialities)。
评价指标体系
信用评价模型
信用评价模型
HYPERLINK /CreditDynamic/CreditResearch/ \l 1 多元判别分析(MDA)?? HYPERLINK /CreditDynamic/CreditResearch/ \l 2 Logit分析模型 ?? HYPERLINK /CreditDynamic/CreditResearch/ \l 3 近邻法 ?? HYPERLINK /CreditDynamic/CreditResearch/ \l 4 分类树 ?? HYPERLINK /CreditDynamic/CreditResearch/ \l 5 人工神经网络(ANN)模型
?
????国际上,对企业的信用评价,通常将商业银行对企业信用风险的测度转化为对企业财务状况的衡量问题,因为信用风险的形成——企业是否能如期还本付息,主要取决于企业财务状况。具体做法是根据历史上每个类别(如信用等级AAA、AA、A、BBB等)的若干样本,从已知的数据中发现规律,从而总结出分类的规则,建立判别模型,用于对新的样本的判别。当然我们不能仅根据企业某些单一指标,而应根据影响企业财务状况的多维指标来评估企业的财务状况。因此,这些方法的关键步骤和难点在于指标体系的确立和评估模型的选择,也即如何将多维指标综合起来。目前采用的方法有统计方法、专家系统、神经网络技术等。?
???国内外在对信用评价中,广泛采用了基于统计判别方法的预测模型,这些方法都是在Fisher于1936年作出的启发性研究之后提出来的。总的来说,这些模型都被表述为一类分类系统(如图1.2),它们接受定义在已选变量集合上的一个随机观测值样本,建立判别函数,进行分类。常用的模型有:回归分析法、多元判别分析法、Logit法、Probit法等,这些模型已经得到广泛的应用,但它们仍存在着许多缺陷,下面就分别介绍这几种模型。
????
1.2 模型的分类系统
?
多元判别分析(MDA)
?
Chesser判别模型????????????? ZETA分析模型
多元判别分析(MDA)是除美国外的其他国家使用最多的统计方法。多元线性判别分析法,可以具体为一般判别分析(不考虑变量筛选)和定量资料的逐步判别分析(考虑变量筛选)。我国在1993年7月1日起正式实施与国际会计准则基本适应的、统一的《企业会计准则》,由此奠定了企业信用评估研究的基础和前提,随着国内会计人员的业务水平(如对准则的掌握、理解和应用水平等)和会计报表水平的不断提高,所产生的会计报表开始基本符合准则要求,因此,近年来的财务数据已具备建立企业信用判别模型的基本条件,采用多元判别分析方法建立企业信用评价模型,并将判别结果与其它线性模型相比较,可以看出用多元判别分析方法建立的企业信用评价模型在判别的准确性上有较大提高。但应用多元判别分析(MDA)有以下三个主要假设:
???? ①? 变量数据是正态分布的;??
???? ②? 各组的协方差是相同的;
???? ③? 每组的均值向量、协方差矩阵、先验概率和误判代价是已知的。?
???? 对经济、财务变量的正态假设已成为通常惯例。由于线性判别函数(LDA)在实际使用中是最方便的,如在距离判别和贝叶斯判别中,在正态总体等协方差时,均导出一个线性判别函数,所以一般只研究线性判别函数。在满足上述3个假设的条件下,该判别函数使误判概率达最小,下面介绍几个应用判别分析法建立的模型。
????1)Chesser判别模型
??
文档评论(0)