基于Gabor理论的山水画皴法分类精选.pdf

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于Gabor理论的山水画皴法分类精选

Computer Science and Application 计算机科学与应用, 2014, 4, 59-65 Published Online March 2014 in Hans. /journal/csa /10.12677/csa.2014.43011 Classification of Landscape Painting Texturing Based on Gabor Yufan Li, Hongyan Xing, Jingxuan Chen, Minzhi Yang School of Applied Mathematics, Guangdong University of Technology, Guangzhou Email: justin_yufan@163.com, 928hongy@163.com, 1054637410@, 593097322@ nd rd th Received: Feb. 2 , 2014; revised: Mar. 3 , 2014; accepted: Mar. 12 , 2014 Copyright © 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/ Abstract Extracting the effective features for texture description and classification has always been the hot spot of the texture analysis. In this paper, according to different texture of traditional Chinese painting, we use a kind of Gabor filter technique to classify the painting. By texture feature extrac- tion, first of all, we preprocess the traditional Chinese painting images with geometric normaliza- tion and light normalization, after that we process the group of the Gabor filter of high dimension- al feature vectors by principal component analysis (PCA) for dimension reduction. Finally, support vector machine (SVM) method is employed for texture classification. The accuracy rate of this classification method can reach 95.5%. Keywords Texturing Classification; Gabor Filter; Principal Component Analysis; Support Vector Machine 基于Gabor理论的山水画皴法分类 黎宇帆,邢鸿雁,陈静旋,杨敏之 广东工业大学应用数学学院,广州 Email: justin_yufan@163.com, 928hongy@163.com, 1054637410@, 593097322@ 收稿日期:2014年2月2 日;修回日期:2014年3月3 日;录用日期:2014年3月12 日 摘 要 提取具有代表性的特

文档评论(0)

tazhiq2 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档