网站大量收购独家精品文档,联系QQ:2885784924

MapReduce培训课件.ppt

  1. 1、本文档共29页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
MapReduce培训课件

* * * Performance Tests run on cluster of 1800 machines: 4 GB of memory Dual-processor 2 GHz Xeons with Hyperthreading Dual 160 GB IDE disks Gigabit Ethernet per machine Bisection bandwidth approximately 100 Gbps Two benchmarks: MR_Grep Scan 1010 100-byte records to extract records matching a rare pattern (92K matching records) MR_Sort Sort 1010 100-byte records (modeled after TeraSort benchmark) MR_Grep Locality optimization helps: 1800 machines read 1 TB of data at peak of ~31 GB/s Without this, rack switches would limit to 10 GB/s Startup overhead is significant for short jobs MR_Sort Backup tasks reduce job completion time significantly System deals well with failures Normal No Backup Tasks 200 processes killed More and more MapReduce MapReduce Programs In Google Source Tree Example uses: distributed grep distributed sort web link-graph reversal term-vector per host web access log stats inverted index construction document clustering machine learning statistical machine translation MapReduce Conclusions MapReduce has proven to be a useful abstraction Greatly simplifies large-scale computations at Google Functional programming paradigm can be applied to large-scale applications Fun to use: focus on problem, let library deal w/ messy details Further Improvement “Improving MapReduce Performance in Heterogeneous Environments” in OSDI’08 * * * * * * * * * * * * * * * * * * * * * * * * * * MapReduce课件 Outline MapReduce overview Discussion Questions MapReduce Motivation 200+ processors 200+ terabyte database 1010 total clock cycles 0.1 second response time 5¢ average advertising revenue From: /~bryant/presentations/DISC-FCRC07.ppt Motivation: Large Scale Data Processing Want to process lots of data ( 1 TB) Want to parallelize across hundreds/thousands of CPUs … Want to make this easy Google Earth uses 70.5 TB: 70 TB for the raw imagery and 500 GB for the index data. From: /2006/09/how-much-data-does-google-store.html MapReduce Automatic paralleli

文档评论(0)

ligennv1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档