网站大量收购独家精品文档,联系QQ:2885784924

FiniteSamplePropertiesoftheLeastSquaresEstimator文件材料(二).ppt

FiniteSamplePropertiesoftheLeastSquaresEstimator文件材料(二).ppt

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* * * * Applied Econometrics William Greene Department of Economics Stern School of Business Applied Econometrics 6. Finite Sample Properties of the Least Squares Estimator Deriving the Properties So, b = a parameter vector + a linear combination of the disturbances, each times a vector. Therefore, b is a vector of random variables. We analyze it as such. The assumption of nonstochastic regressors. How it is used at this point. We do the analysis conditional on an X, then show that results do not depend on the particular X in hand, so the result must be general – i.e., independent of X. Properties of the LS Estimator Expected value and the property of unbiasedness. E[b|X] = ? = E[b]. Prove this result. A Crucial Result About Specification: y = X1?1 + X2?2 + ? Two sets of variables. What if the regression is computed without the second set of variables? What is the expectation of the short regression estimator? b1 = (X1?X1)-1X1?y The Left Out Variable Formula (This is a VVIR!) E[b1] = ?1 + (X1?X1)-1X1?X2?2 The (truly) short regression estimator is biased. Application: Quantity = ?1Price + ?2Income + ? If you regress Quantity on Price and leave out Income. What do you get? (Application below) The Extra Variable Formula A Second Crucial Result About Specification: y = X1?1 + X2?2 + ? but ?2 really is 0. Two sets of variables. One is superfluous. What if the regression is computed with it anyway? The Extra Variable Formula: (This is a VIR!) E[b1.2| ?2 = 0] = ?1 The long regression estimator in a short regression is unbiased.) Extra variables in a model do not induce biases. Why not just include them, then? Well pursue this later. Application: Left out Variable Leave out Income. What do you get? E[b1] = ?1 + ?2 In time series data, ?1 0, ?2 0 (usually) Cov[Price,Income] 0 in time series data. So, the short regression will ov

文档评论(0)

youngyu0329 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档