算法分析与设计ANN 神经网络.ppt

  1. 1、本文档共53页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
算法分析与设计ANN 神经网络

神经网络 Neural Network 三种神经网络模型 人工神经网络是近年来得到迅速发展的一个前沿课题。神经网络由于其大规模并行处理、容错性、自组织和自适应能力和联想功能强等特点,已成为解决很多问题的有力工具。 前向神经网络-BP NN 反馈神经网络-Hopfield NN 自组织神经网络-SOM 神经网络的提出 人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特性的一种描述。简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。 。 神经网络的提出 人工智能:研究如何使类似计算机这样的设备去模拟人类的这些能力。 研究人工智能的目的 增加人类探索世界,推动社会前进的能力 进一步认识自己 三大学术流派 符号主义(或叫做符号/逻辑主义)学派 联接主义(或者叫做PDP)学派 进化主义(或者叫做行动/响应)学派 神经网络的提出 神经网络的提出 Newell和Simon假说 :一个物理系统表现智能行为的充要条件是它有一个物理符号系统 概念:物理符号系统需要有一组称为符号的实体组成,它们都是物理模型,可以在另一类称为符号结构的实体中作为成分出现,以构成更高级别的系统 困难: 抽象——舍弃一些特性,同时保留一些特性 形式化处理——用物理符号及相应规则表达物理系统的存在和运行。 局限: 对全局性判断、模糊信息处理、多粒度的视觉信息处理等是非常困难的。 神经网络的提出 联接主义观点 核心:智能的本质是联接机制。 神经网络是一个由大量简单的处理单元组成的高度复杂的大规模非线性自适应系统 ANN力求从四个方面去模拟人脑的智能行为 物理结构 计算模拟 存储与操作 训练 神经网络的提出 物理符号系统和人工神经网络系统的差别 神经网络的提出 两种人工智能技术的比较 历史回顾 1.3.1 萌芽期(20世纪40年代) 人工神经网络的研究最早可以追溯到人类开始研究自己的智能的时期,到1949年止。 1943年,心理学家McCulloch和数学家Pitts建立起了著名的阈值加权和模型,简称为M-P模型。发表于数学生物物理学会刊《Bulletin of Methematical Biophysics》 1949年,心理学家D. O. Hebb提出神经元之间突触联系是可变的假说——Hebb学习律。 第一高潮期(1950~1968) 以Marvin Minsky,Frank Rosenblatt,Bernard Widrow等为代表人物,代表作是单级感知器(Perceptron)。 可用电子线路模拟。 人们乐观地认为几乎已经找到了智能的关键。许多部门都开始大批地投入此项研究,希望尽快占领制高点 反思期(1969~1982) M. L. Minsky和S. Papert,《Perceptron》,MIT Press,1969年 异或”运算不可表示 二十世纪70年代和80年代早期的研究结果 认识规律:认识——实践——再认识 第二高潮期(1983~1990) 1982年,J. Hopfield提出循环网络 用Lyapunov函数作为网络性能判定的能量函数,建立ANN稳定性的判别依据 阐明了ANN与动力学的关系 用非线性动力学的方法来研究ANN的特性 指出信息被存放在网络中神经元的联接上 神经网络的提出 2)1984年, J. Hopfield设计研制了后来被人们称为Hopfield网的电路。较好地解决了著名的TSP问题,找到了最佳解的近似解,引起了较大的轰动。 3)1985年,UCSD的Hinton、Sejnowsky、Rumelhart等人所在的并行分布处理(PDP)小组的研究者在Hopfield网络中引入了随机机制,提出所谓的Boltzmann机。 4)1986年,并行分布处理小组的Rumelhart等研究者重新独立地提出多层网络的学习算法——BP算法,较好地解决了多层网络的学习问题。(Paker1982和Werbos1974年) 国内首届神经网络大会是1990年12月在北京举行的。 再认识与应用研究期(1991~) 问题: 1)应用面还不够宽 2)结果不够精确 3)存在可信度的问题 研究: 1)开发现有模型的应用,并在应用中根据实际运行情况对模型、算法加以改造,以提高网络的训练速度和运行的准确度。 2)充分发挥两种技术各自的优势是一个有效方法 3)希望在理论上寻找新的突破,建立新的专用/通用模型和算法。 4)进一步对生物神经系统进行研究,不断地丰富对人脑的认识。 生物神经网 生物神经网 六个基本特征: 1)神经元及其联接; 2)神经元之间的联接强度决定信号传递的强弱; 3)神经元之间的联接强度是可以随训练

文档评论(0)

ligennv1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档