- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
p的so粒子群算法
粒子群优化算法 PSO 算法介绍 PSO算法流程图和伪代码 应用举例 例6.1 已知函数 , 其中 ,用粒子群优化算法求解y的最小值。 运行步骤 PSO和其他算法 差异: (1) PSO有记忆,好的解的知识所有粒子都保 存,而GA,以前的知识随着种群的改变被改变。 (2) PSO中的粒子仅仅通过当前有哪些信誉好的足球投注网站到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。 (3) GA的编码技术和遗传操作比较简单,而PSO 相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。 算法介绍 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。 (2)式 (1)式 在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士于1995年提出 (Kennedy J,Eberhart R. Particle swarm optimization.Proceedings of the IEEE International Conference on Neural Networks.1995.1942~1948.)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。 算法介绍 算法介绍 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。 (2)式 (1)式 在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数 算法介绍 设想这样一个场景:一群鸟在随机的有哪些信誉好的足球投注网站食物。 在这个区域里只有一块食物,所有的鸟都不知 道食物在那。但是它们知道自己当前的位置距 离食物还有多远。 那么找到食物的最优策略是什么? 最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。 算法介绍 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。 (2)式 (1)式 在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数 抽象: 鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi.这个可以看作是粒子自己的飞行经验.除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值).这个可以看作是粒子同伴的经验.粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。 算法介绍 算法介绍 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。 (2)式 (1)式 在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。 (1)式 (2)式 在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数 算法介绍 算法介绍 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。 在找到这两个
文档评论(0)