基于k均值聚类的图像分割研究2012.doc

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多媒体通信课程论文 姓 名:严宏海 班 级: 075102 学 号:20101003032 专 业: 通信工程 学 院:机械与电子信息学院 指导老师: 刘 勇 日 期:2012 k均值聚类在彩色图像分割中的应用研究 摘要 基于人类视觉将图像分割成若干个有意义的区域是目标检测和模式识别的基础。 图像分割属于图像处理中一种重要的图像分析技术。图像分割的传统方法是对灰度图像分割,处理图像的亮度分量,简单快速。本论文首先介绍了传统的图像分割与K-均值聚类算法分割,然后重点介绍一种基于K-均值聚类算法的图像改进分割方法。在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,结合粗糙集理论和K-均值聚类算法,提出了一种图像的粗糙聚类分割方法,试验结果表明,其比随机选取聚类的中心点和个数,减少了运算量,提高了分类精度和准确性。改进的分割方法能够实时稳定的对目标分割提取,分割效果良好。 引言 根据抽象程度和处理方法的不同,图像技术可以分为三个层次:图像处理、图像分析和图像理解,这三个层次的有机结合也可以称为图像工程。图像处理是较低层的操作,主要在图像像素级上进行操作。有代表性的图像处理技术包括图像降噪、图像编码和图像分割。图像分割是一种关键的图像处理技术。作为后续图像分析和图像理解的基础,图像分割技术一直是图像理论发展的瓶颈之一。图像分割在实际中的应用非常广泛,对图像目标的提取、测量都离不开图像分割,是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题。分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。 图像分割又是一种特殊的图像处理技术。像素级的图像处理可以分成两类,一类是针对像素值的处理,另一类是把像素分类的处理。图像降噪技术、图像编码技术、数字水印技术等虽然各有其特点和应用领域,但其实质都是针对像素值的操作。不同于这些技术,图像分割,其实质是一个按照像素属性(灰度、纹理、颜色等)进行聚类的过程。 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。 1. 基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。 2.基于边缘的分割方法 检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。 3.基于聚类分析的图像分割方法 特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。迭代执行前面的步骤直到新旧类均值之差小于某一阈值。模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个

文档评论(0)

xingyuxiaxiang + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档