东北大学数据挖掘第5章.ppt

  1. 1、本文档共83页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
东北大学数据挖掘第5章.ppt

Formal definition of association rule I= {i1, i2, …, im} is an itemset, i.e. a set of items D is the task relevant data, which is a set of transactions where each transaction T is an itemset such that T?I if A is an itemset, we say T contains A iff A?T an association rule is of the form A?B, where A?I, B?I, and A?B =? the rule holds in D with support(A?B) = Prob(AB) confidence (A?B) = Prob(B|A) rules satisfying both min_sup and min_conf are strong an itemset contains k items is a k-itemset the number of transactions that contain an itemset is the frequency (or support count) of the itemset if an itemset satisfies min_sup, then it is a frequent itemset (or large itemset) Frequent, closed, and maximal itemset Frequent itemset An itemset X is frequent in a data set S if X satisfies min_sup Closed itemset An itemset X is closed in a data set S if there exists no proper super-itemset Y such that Y has the same support count as X in S. An itemset X is a closed frequent itemset in set S if X is both and frequent in S. Maximal frequent itemset An itemset X is a maximal frequent itemset in set S if X is frequent, and there exists no super-itemset Y such that X?Y and Y is frequent in S. Categories of association rules Based on the types of values Boolean association rule buys(X, “diapers”) ? buys(X, “beers”) [0.5%, 60%] quantitative association rule age(X, “30-39”)?income(X, “42-48K”)?buys(X, “computer”) [1%, 5%] Based on the dimensions of data single-dimensional association rule buys(X, “diapers”) ? buys(X, “beers”) [0.5%, 60%] multidimensional association rule age(X, “30-39”)?income(X, “42-48K”)?buys(X, “computer”) [1%, 75%] Based on the levels of abstractions single-level association rule age(X, “30-34”) ? buys(X, “computer”) [1%, 75%] multilevel association rule age(X, “30-32”) ? buys(X, “laptop computer”) [0.5%, 80%] age(X, “30-34”) ? buys(X, “computer”) [1%, 75%] Categories of association rules Two-step process of association rule

文档评论(0)

heroliuguan + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8073070133000003

1亿VIP精品文档

相关文档