网站大量收购闲置独家精品文档,联系QQ:2885784924

CTAC论文模版中国纺织学术年会网.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
CTAC论文模版中国纺织学术年会网

毛精纺前纺工艺参数重要性的BP网络定量评价法 刘 贵,于伟东1,2 东华大学 纺织材料与技术实验室,上海 201620; 武汉科技学院 纺织与材料学院,湖北 武汉 430073) 摘 要(小五黑体)在BP神经网络建模技术的基础上,提出利用神经网络输入层与输出层之间的网络权值及其分布来求各输入参数重要程度的方法。将采集到的毛精纺企业前纺工艺参数运用BP神经网络分别建立了粗纱CV值和粗纱单重的预测模型。结果表明:所建模型的平均相对误差都低于3%;采用样本数据验证,其预报值与实测值间的相关系数都高于0.95。对所建模型的网络权重进行提取,分别计算出13个输入参数对粗纱CV值和粗纱单重的重要性,挖掘出显著而有效的参数。经对比认为,BP网络法比多元回归显著性分析(MRSA)更为精准,可用于对实际生产加工的预报和控制。(小五宋体) 关键词(小五黑体)毛精纺;前纺工艺参数;模型;BP神经网络;定量评价法(小五宋体) 中图分类号(小五黑体): TS 131.9(小五宋体) 文献标志码(小五黑体): Quantitative evaluation method for the significance of worsted fore-spinning parameters based on BP neural network LIU Gui1,1,2(五号) (1.Textile Materials andTechnology Laboratory Donghua University, Shanghai 201620,China; 2.Department of Textiles and Materials, Wuhan University of Science and Engineering, Wuhan, Hubei 430073,China) Abstract Based on BP neural network model technology, a new approach was developed and applied to appraise the input parameters′significant degree through the weightiness and its distribution between the input and output layer. Usingthe fore-spinningworking procedure data gathered fromtheworsted textiles enterprise, the roving unevenness and weight prediction models were established respectively. The results indicated that the models′mean relative errors are all less than 3%; the correlation coefficientR2between the prediction value and the actual are all more than 0·95. Using the weightiness extracted fromthe established models, the 13 input parameters′significance to the roving unevenness and weight were calculated respectively, and the remarkable and effective parameters are excavated out. Meanwhile contrasting to the multivariate regression significance analysis (MRSA), the BP neural network method is more exact than MRSA and can be used in the forecast and control of the actual produce and manufacture (小五) Key words Double glow; Artificial neural network; Prediction model (小五) (正文五号宋体,单倍行距)对精毛纺织厂而言,前纺工序作为整个加工过程的第一环节,其加工质量对后道工序将产生直接影响。根据实际生产经验,细纱的条干不匀率和细纱机的断头率相对于末道粗纱的质量呈显著的线性关

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档