[理学]第八章--纳米固体材料的微观结构.ppt

[理学]第八章--纳米固体材料的微观结构.ppt

  1. 1、本文档共84页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[理学]第八章--纳米固体材料的微观结构

主要内容 8.1 纳米固体的结构特点 8.2 纳米固体界面的结构模型 8.3 纳米固体界面的X光实验研究 8.3.1 类气态模型的诞生及争论 8.3.2 有序结构模型的实验依据 8.3.3 纳米非晶固体界面的径向分布函数研究 8.4 界面结构的电镜观察 8.5 穆斯堡尔谱研究    在固体中处于激发态的核回到基态时无反冲地放出光子,这种光子被处于基态的同种核(又称吸收体)无反冲地共振吸收的吸收谱称为穆斯堡尔谱。 由于原子核与其核外环境(核外电子,近邻原子及晶体结构等)之间存在细微的相互作用,即超精细相互作用。穆斯堡尔谱学提供了直接研究它的一个有效手段,并能直接有效地给出有关微观结构的信息。 8.6 纳米固体结构的内耗研究 8 .7 正电子湮没研究 (1)正电子射入凝聚态物质中,在与周围达到热平衡后通常要经历一段时间才会和电子湮没,这段时间为正电子寿命τ。 8.7.l 纳米结构材料缺陷的研究 8.7.2 烧结过程中纳米材料致密化的研究   致密度的问题是纳米结构材料烧结过程中最重要的研究内容,它是关系到纳米材料应用的关键问题。纳米材料在绕结中如何完成致密化的过程主要与材料中的空位、空位团、空洞在烧结过程中的变化密切相关。利用正电子技术就能获得上述信息。 8.8 纳米材料结构的核磁共振研究 8.9 拉曼光谱 8.10 电子自旋共振的研究 8.10.1 基本概念 8.10.2 电子自旋共振研究纳米材料的实验结果 纳米非晶氮化硅键结构的ESR研究结果如下:电子自旋共振对未成键价电子十分敏感,悬键即为存在未成键电子的结构,因而利用ESR谱可以清楚地了解悬键的结构。一般认为,如果存在单一类型的悬键,ESR信号是对称的。如果出现不对称时,可以肯定存在几种类型的悬键结构,是这几种ESR信号的叠加。 对常规晶态Si3N4的ESR信号如图8.28所示。 8.11 纳米材料结构中的缺陷     8.11.1 位错    20世纪90年代有不少人用高分辨电镜分别在纳米Pd中已经观察到了位错、孪晶、位错网络等。这就在实验上以无可争辩的实验事实揭示了纳米晶内存在位错、孪晶等缺陷,图8.34示出了纳米Pd晶体中的位错和孪晶的高分辨像。  8.11.2 三叉晶界 8.11.3 空位、空位团和孔洞 8.12 康普顿轮廓法 结论: 本章小结 纳米材料中晶粒尺寸对位错组态有影响,俄罗斯科学院Gryaznov等率先从理论上分析了纳米材料的小尺寸效应对晶粒内位错组态的影响。对多种金属的纳米晶体位错组态发生突变的临界尺寸进行了计算。他们的主要观点是与纳米晶体的其他性能一样,当晶粒尺寸减小达到某个特征尺度时性能就会发生突变。 他们通过计算给出了纳米金属Cu,Al,Ni和α—Fe块体的特征长度,如表8.8所列。由表中可看出同一种材料,粒子的形状不同使得位错稳定的特征长度不同。 为了分析在纳米微晶块体试样中滑移位错稳定性问题,他引入了两个表征位错稳定性的参数:一是位错稳定时的相对体积Δ,Δ=Ve/V,这里V为一个颗粒的总体积,Ve为在此晶粒中位错稳定存在的体积。另一个参数就是上述的特征长度L,又称位错稳定的特征常数,晶粒尺寸小于它,位错则不稳定。对于Δ =1/2的圆柱形或球形纳米晶粒,L等于它们的半径。图8.35和图8.36为Δ和L与纳米微晶块体特征参数的关系。 图8.35分别示出了不同形状晶粒内稳态位错相对体积Δ与参数Ω和弹性模量比Г的关系。对同一种结构被确定的材料,Ω的变化反映了粒径大小。这样由图8.35很容易看出,随颗粒尺寸l减小(即Ω的减小),稳态位错的相对体积Δ也下降,这就意味着,当颗粒尺寸l小于L时,稳态位错所占体积大大减小。这进一步说明在纳米态下,小于特征长度L的晶粒内,稳态位错密度比常规粗晶的密度低得多。   三叉晶界在纳米材料界面中体积分数高于常规的多晶材料,因而它对材料的性质,特别是力学性质影响是很大的。如图8.37所示,这里需要指出的是他们把整个界面分成两部分,一是三叉晶界区,二是晶界区。这两个部分的体积总和称为晶间区体积。 单空位主要在晶界,这主要对第一类纳米固体在颗粒压制成块体时形成的。 空位团主要分布在三叉晶界上。它的形成一部分可归结为单空位的扩散凝聚,也有一部分在压制成块状试样时形成的。 空洞一般处于晶界上。空洞存在的数量(空洞率)决定了纳米材料的致密程度。   测量X射线或γ射线的康普顿散射是研究物质电子动量分布的一种直接手段,它被广泛地用于研究多晶、单晶、非晶和合金等的电子状态。用这种

文档评论(0)

skvdnd51 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档