软测量方法原理及实际应用.pptVIP

  1. 1、本文档共34页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
软测量方法原理及实际应用

软测量方法原理及实际应用实例 主讲:邢文杰 专业:材料加工工程 主要内容: 1 软测量介绍 2 软测量技术的数学描述和结构 3 软测量建模方法 4 影响软测量性能的因素 5 基于参数辨识的软测量方法的实际应用 1 软测量介绍 1.1 软测量技术 软测量技术是一门有着广阔发展前景的新兴工业技术,已成为过程检测技术与仪表研究的主要方向之一。 软测量是在成熟的硬件传感器基础上,以计算机技术为核心,通过软测量模型运算处理完成的。 软测量技术主要由辅助变量的选择、数据采集和处理、软测量模型及在线校正 四个部分组成. 1.2 软测量技术的提出 在实际生产过程中,存在着许多因为技术或经济原因无法通过传感器进行直接测量的过程变量,如精馏塔的产品组分浓度. 传统的解决方法有两种:一是采用间接的质量指标控制,如精馏塔灵敏板温度控制、温差控制等,存在的问题是难以保证最终质量指标的控制精度;二是采用在线分析仪表控制,但设备投资大、维护成本高、存在较大的滞后性,影响调节效果 软测量技术应运而生 1.3 软测量技术的概念与思想 软测量技术也称为软仪表技术,就是利用易测过程变量(称为辅助变量或二次变量),依据这些易测过程变量与难以直接测量的待测过程变量(称为主导变量)之间的数学关系(软测量模型),通过各种数学计算和估计方法,从而实现对待测过程变量的测量 软测量的基本思想是把自动控制理论与生产工艺过程知识有机结合起来,应用计算机技术,对于一些难于测量或暂时不能测量的重要变量(主导变量),选择另外一些容易测量的变量(辅助变量),通过构成某种数学关系来推断和估计,以软件来代替硬件功能 1.4 软测量的意义与适用条件 软测量的意义:1.能够测量目前由于技术或经济的原因无法或难以用传感器直接检测的重要的过程参数,2.有助于提高控制性能 软测量的适用条件:1.无法直接检测被估计变量,或直接检测被估计变量的自动化仪器仪表较贵或维护困难;2.通过软测量技术所得到的过程变量的估计值必须在工艺过程所允许的精确度范围内;3.能通过其他检测手段根据过程变量估计值对系统数学模型进行校验;4.被估计过程变量具有灵敏性、精确性、鲁棒性等特点 2 软测量技术的数学描述和结构 软测量的数学描述: 软测量的目的就是利用所有可以获得的信息求取主导变量的最佳估计值,即构造从可测信息集θ到 ? 的映射,其中可测信息集θ包括所有的可测主导变量y 和辅助变量θ 、控制变量u 和可测扰动d : ?=? (d ,u ,θ) 软测量的结构: 3 软测量建模方法的分类 目前主要软测量建模的方法: 机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学、基于支持向量机(SVM)方法、过程层析成像、相关分析和现代优化算法等多种建模方法。 基于工艺机理分析的软测量方法: ◆ 主要是运用物料平衡、 能量平衡、化学反应动力学等原理,通过对过程对象的机理分析,找出不可测主导变量与可测辅助变量之间的关系(建立机理模型),从而实现对某一参数的软测量。 ◆ 对于工艺机理较为清楚的工艺过程,该方法能构造出性能良好的软仪表;但是对于机理研究不充分、尚不完全清楚的复杂工业过程,则难以建立合适的机理模型。 基于回归分析的软测量方法: ◆ 通过实验或仿真结果的数据处理,可以得到回归模型 ◆ 经典的回归分析是一种建模的基本方法,应用范围相当广泛。以最小二乘法原理为基础的回归技术目前已相当成熟,常用于线性模型的拟合。对于辅助变量较多的情况,通常要借助机理分析,首先获得模型各变量组合的大致框架,然后再采用逐步回归方法获得软测量模型。为简化模型,也可采用主元回归分析法和部分最小二乘回归法等方法。 ◆ 基于回归分析的软测量建模方法简单实用,但需要足够有效的样本数据,对测量误差较为敏感。 基于状态估计的软测量方法: ◆ 基于某种算法和规律, 从已知的知识或数据出发,估计出过程未知结构和结构参数、 过程参数。对于数学模型已知的过程或对象,在连续时间过程中,从某一时刻的已知状态y(k)估计出该时刻或下一时刻的未知状态x(k)的过程就是状态估计。如果系统的主导变量作为系统的状态变量关于辅助变量是完全可观的,那么软测量问题就转化为典型的状态观测和状态估计问题。 ◆采用Kalman滤波器和Luenberger观测器是解决问题的有效方法。前者适用于白色或静态有色噪声的过程,而后者则适用于观测值无噪声且所有过程输入均已知的情况。 基于知识的软测量方法: ◆ 基于人工神经网络的软测量建模方法是近年来研究最多、发展很快和应用范围很

文档评论(0)

zijingling + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档