基于广义相关系数的后非线性盲信号分离算法.pdf

基于广义相关系数的后非线性盲信号分离算法.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于广义相关系数的后非线性盲信号分离算法

绗?7 鍗 绗? 鏈 鎺 鍒 涓 鍐 绛 2012 骞 9 鏈 Vol. 27 No. 9 Control and Decision Sep. 2012 鏂囩珷缂栧彿: 1001-0920 (2012) 09-0000-00 鍩轰簬骞夸箟鐩稿叧绯绘暟鐨勫悗闈炵嚎鎬х洸淇″彿鍒嗙绠楁硶 a b a a 寮犺搐褰 , 榛勯珮鏄 , 鍒樺痉蹇 , 闄 娑 (娴峰啗宸ョ▼澶уa. 鑸拌埞缁煎悎鐢靛姏鎶€鏈浗闃茬鎶€閲嶇偣瀹為獙瀹わ紱b. 鐢靛瓙宸ョ▼瀛﹂櫌锛屾姹?30033) 鎽 瑕? 鍩轰簬浜掍俊鎭渶灏忓寲鐨勭嫭绔嬫€ф祴搴﹀鍚勫垎绂讳俊鍙烽棿鐨勯潪绾挎€х浉鍏冲害搴﹂噺娌℃湁褰掍竴鍖栫殑闂, 鎻愬嚭涓€绉嶅熀浜庡箍 涔夌浉鍏崇郴鏁扮殑鐩蹭俊鍙峰垎绂?BSS) 绠楁硶. 棣栧厛閫夊彇鍚庨潪绾挎€ф贩鍙犳ā鍨?PNL) 鍒嗘瀽鍩轰簬骞夸箟鐩稿叧绯绘暟鐨勭嫭绔嬫€ф祴搴? 鐒 鍚庨噰鐢℅ram-Charlier 鎵╁睍褰㈠紡浼拌杈撳嚭鍙傛暟骞惰幏鍙栬瘎浠峰嚑鐜囧嚱鏁? 缁撳悎鏈€闄′笅闄嶆硶姹傚緱鍒嗙鐭╅樀鍜屽弬鏁板寲鍙€嗛潪 绾挎€ф槧灏勭殑绠楁硶杩唬鍏紡. 浠跨湡缁撴灉琛ㄦ槑, 閲囩敤鎵€鎻愬嚭鐨勭畻娉曡兘澶熷畾閲忓垎鏋愬悇鍒嗙淇″彿闂寸殑闈炵嚎鎬х浉鍏崇▼搴? 鏈夋晥鍒 绂诲悗闈炵嚎鎬ф贩鍙犱俊鍙? 鍏抽敭璇岤 鍚庨潪绾挎€ф贩鍙狅紱鐩蹭俊鍙峰垎绂伙紱骞夸箟鐩稿叧绯绘暟锛涗簰淇℃伅 涓浘鍒嗙被鍙耳 TM46 鏂囩尞鏍囪瘑鐮? A Blind source separation algorithm for post-nonlinear mixture based on generalized correlation coef铿乧ient a b a a ZHANG Xian-biao , HUANG Gao-ming , LIU De-zhi , TAO Tao (a. National Key Laboratory for Vessel Integrated Power System Technology锛沚. College of Electronic Engineering 锛孨aval University of Engineering 锛學uhan 430033 锛孋hina 锛嶤orrespondent 锛歓HANG Xian-biao 锛孍-mail 锛歾xb1986@126.com) Abstract 锛氾細锛欰ccording to the problem that the independence criterion based on the minimization of mutual information is not normalized, a blind source separation(BSS) algorithm for post-nonlinear mixture(PNL) based on general correlation coef铿乧ient is introduced in this paper. Firstly, the PNL is taken as an indraft point to summarize this algorithm 锛寃hich is the more practicable approximation to realism rather than linear model 锛宮eanwhile the independence criterion based on the genera

文档评论(0)

wumanduo11 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档