中国象棋chinese-chess教材教学课件.ppt

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
演示文稿演讲PPT学习教学课件医学文件教学培训课件

References C. Szeto. Chinese Chess and Temporal Difference Learning J. Baxter. KnightCap: A chess program that learns by combining TD(λ) with minimax search T. Trinh. Temporal Difference Learning in Chinese Chess .tw/index.html How to Win a Chinese Chess Game Reinforcement Learning Cheng, Wen Ju Set Up RIVER General Guard Minister Rook Knight Cannon Why Temporal Difference Learning the average branching factor for the game tree is usually around 30 the average game lasts around 100 ply the size of a game tree is 30100 Searching alpha-beta search 3 ply search vs 4 ply search horizon effect quiescence cutoff search Horizon Effect t t+1 t+2 t+3 Evaluation Function feature property of the game feature evaluators Rook, Knight, Cannon , Minister, Guard, and Pawn weight: the value of a specific piece type feature function: f return the current player’s piece advantage on a scale from -1 to 1 evaluation function: Y Y = ∑k=1 to 7 wk * fk TD(λ) and Updating the Weights wi, t+1 = wi, t + a (Yt+1 – Yt)S k=1 to t l t-k? wiYk = wi, t + a (Yt+1 – Yt)(fi, t + l fi, t-1 + l 2fi, t-2 + … + l t-1fi, 1) = 0.01 learning rate –how quickly the weights can change = 0.01 feedback coefficient -how much to discount past values Features Table t f1 f2 f3 f4 f5 f6 ... 5 0 0 -0.5 0 0 0.4 6 0 0 0 0 0 -0.4 7 0 0 0 0 -0.5 0.4 8 0 0 -0.5 0 0.5 -0.4 ... Array of Weights 1.0000 1.0000 0.9987 1.0000 1.0000 1.0101 Example t=5 t=6 t=7 t-8 Final Reward loser if is a draw, the final reward is 0 if the board evaluation is negative, then the final reward is twice the board if the board evaluation is positive, then the final reward is -2 times the board evaluation winner if is a draw, the final reward is 0 if the board evaluation is negative, then the final reward is -2 times the board evaluation if the board evaluation is positive, then the final reward is twice the board evaluation Final Reward the weights are normalized by dividing by the greatest weight any negative weights are set to zer

文档评论(0)

youngyu0329 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档