网站大量收购闲置独家精品文档,联系QQ:2885784924

《统计学》第五版总复习.ppt

  1. 1、本文档共110页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《统计学》第五版总复习

* * * * * * 65 The sampling distribution is a function of the sample sizes upon which the sample variances are based. Hint: Recall the formula for variance! s2 = S(x -`x)2/(n-1) As a result of this class, you will be able to ... An estimator is a random variable used to estimate a population parameter (characteristic). Unbiasedness An estimator is unbiased if the mean of its sampling distribution is equal to the population parameter. Efficiency The efficiency of an unbiased estimator is measured by the variance of its sampling distribution. If two estimators, with the same sample size, are both unbiased, then the one with the smaller variance has greater relative efficiency. Consistency An estimator is a consistent estimator of a population parameter if the larger the sample size, the more likely it is that the estimate will come close to the parameter. An estimator is a random variable used to estimate a population parameter (characteristic). Unbiasedness An estimator is unbiased if the mean of its sampling distribution is equal to the population parameter. Efficiency The efficiency of an unbiased estimator is measured by the variance of its sampling distribution. If two estimators, with the same sample size, are both unbiased, then the one with the smaller variance has greater relative efficiency. Consistency An estimator is a consistent estimator of a population parameter if the larger the sample size, the more likely it is that the estimate will come close to the parameter. 10.1 方差分析概述 3. 误差分析 如果不同的水平对观测结果没有影响 组间误差中只包含有随机误差,没有系统误差 组间方差与组内方差很接近,二者比值接近1 如果不同的水平对观察结果有影响 组间误差中包含随机误差和系统误差 组间方差大于组内方差,二者比值就会大于1 当这个比值大到某种程度时,不同水平之间存在着显著差异,即自变量对因变量有影响 小结:方差分析表的一般形式 H0:μ1= μ2 =…=μk H1:k个总体均值不全相等 检验统计量 其中MSA=SSA/(k-1); MSE=SSE/(n–k) 拒绝规则 P值法:P小于等于a,则拒绝原假设 临界值法:F大于等于Fa,则拒绝原假设 其中Fa是分子自由度为k-1、分母自由度为n-k的F分布右侧(上侧)面积为a的F值 3. 统计决策 如果原假设H0:μ1= μ2 =…=μk成立,则表明没有系统误差,组间方差MSA与组内方差MSE的比值差异不会太大;如果MSA显著大于MSE,说明各水平(总体)之间的差异显然不仅仅有随机误差,还有系统误差 判断因素的水平是否对其观测值有显著影响

文档评论(0)

yaocen + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档