改进熵值法建立组合模型预测地基沉降-AtlantisPress.PDF

改进熵值法建立组合模型预测地基沉降-AtlantisPress.PDF

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
改进熵值法建立组合模型预测地基沉降-AtlantisPress.PDF

International Conference on Education, Management and Computer Science (ICEMC 2016) Improved Entropy Method Establishing Combination Model for Prediction Foundation Settlement Yanping Gao1, a, Yang Yang2, b and Jie Wang1, c 1Hebei University of Engineering, Handan, Hebei Province, China 2 Hebei Institute of Designing Water Resources and Hydropower, Tianjin, China a760761994@, b847200306@, c378205421@ Keywords: Improved entropy method; Exponential model; Logistic model; Combination model; Settlement prediction Abstract. On the basis of the exponential model and Logistic model presented at the previous, using improved entropy method to calculate each model weight coefficient to establish a new combination model for prediction foundation settlement, to achieve the goal of comprehensive advantages of both models and smaller prediction error. Respectively using exponential model, Logistic model and a combination of both a model to process power plant foundation settlement data, and with squared error, mean absolute error, mean absolute percentage error, mean square error for each model to evaluate the prediction accuracy. The results show that Prediction error of combination model established by improved entropy method is less than a single forecast model. The combination model has Higher prediction accuracy and effectively predict the power plant foundation settlement. 改进熵值法建立组合模型预测地基沉降 1,a 2,b 1,c 高艳平 ,杨洋 ,王杰 1.河北工程大学 水电学院 水利工程,中国 河北邯郸,056038 2.河北省水利水电勘测设计研究院,中国 天

文档评论(0)

wendang_12 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档