- 1、本文档共63页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
北交大-密码学课件-第4章-数论初步和有限域
* Infinite fields are not of particular interest in the context of cryptography. However, finite fields play a crucial role in many cryptographic algorithms. It can be shown that the order of a finite field (number of elements in the field) must be a positive power of a prime, these are known as Galois fields denoted GF(p^n). We are most interested in the cases where either n=1 - GF(p), or p=2 - GF(2^n). * Start by considering GF(p) over the set of integers {0…p-1} with addition multiplication modulo p. This forms a “well-behaved” finite field. * Next introduce the interesting subject of polynomial arithmetic, using polynomials in a single variable x, with several variants as listed above. Note we are usually not interested in evaluating a polynomial for any particular value of x, which is thus referred to as the indeterminate. * Polynomial arithmetic includes the operations of addition, subtraction, and multiplication, defined in the usual way, ie add or subtract corresponding coefficients, or multiply all terms by each other. The examples are from the text, with working in Stallings Figure 4.3. * Consider variant where now when computing value of each coefficient do the calculation modulo some value, usually a prime. If the coefficients are computed in a field (eg GF(p)), then division on the polynomials is possible, and we have a polynomial ring. Are most interested in using GF(2) - ie all coefficients are 0 or 1, and any addition/subtraction of coefficients is done mod 2 (ie 2x is the same as 0x!), which is just the common XOR function. * Note that we can write any polynomial in the form of f(x) = q(x) g(x) + r(x), where division of f(x) by g(x) results in a quotient q(x) and remainder r(x). Can then extend the concept of divisors from the integer case, and show that the Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose coefficients are elements of a field. Define an irreducible (or prime) polynomial as one wit
文档评论(0)