卷积神经网络的编码文档指导及详细推导==.pptxVIP

卷积神经网络的编码文档指导及详细推导==.pptx

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
卷积神经网络的编码文档指导及详细推导==

A Hand-writing digit recognition Application base on Neural network and covolutional neural networkColleague of Computer ScienceInner Mongolia UniversityHohhot , Inner Mongolia , P.R ChinaEmail: huangzhiqiang@1. Background2. Method neural network back-propagation3. Experiment training and testing samples neural network structure resultsNN digit recognitionbackgroundOCR (Optical Character Recognition) has become one of the important methods in gathering information and information transformation. Digit recognition has a promising feature in many fields in society, such as the car license plate recognition , postcode recognition, the statistics of report forms and financial report forms. So the research on the Digit recognition is important.methodNeural network is a machine learning method.neural networkmethodBack PropagationBack propagation(BP) is a neural network learning algorithm.EnvironmentHardware: CPU: Intel core i7 3630QM, 2.4GHZ Memory: 8G ByteSoftware: OS: windows 7 (64) IDE: vs2010 (C++)ExperimentExperiment-Training and testing SamplesTraining and testing samples are fromMNIST ,/exdb/mnist//exdb/mnist/Every pic is a 28*28 dot matrixThere are 10 pics in a sample,and there are 891 samples ExperimentOur neural network has 3 layers:LayerInput layerHidden layerOutput layerDimension14*14eaningAverage grey value of four neighbor dotsEmpirical value , about 1~1.5 times of the inputTarget numbers , I.e. 0,1,2,3….9Neural network designExperimentBP neural networkneural network designExperimentresultsTraining samples:Testing samples:Training itemsSample picsRight predictionRight ratioTraining timevalue7000688898.4%603 476msTesting itemstest picsRight predictionRight ratioTraining timevalue1900179194.2632%908ms(0.48ms/pic)Experiment卷积神经网络基于人工神经网络在人工神经网络前,用滤波器进行特征抽取使用卷积核作为特征抽取器自动训练特征抽取器(即卷积核,即阈值参数)卷积卷积其实是一个图像处理核卷积用于增强图像的某种特征卷积的例子子采样降低图像分辨率减少训练维数增强网络对大小变化的适用性一般卷积神经网络的结构我的卷积神经网络结构实验效果训练时间次数及准确率问题1 准确率太低2 准确率抖动厉害3 单线程,训练速度太慢Thank you for listening!

文档评论(0)

zijingling + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档