- 1、本文档共75页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* * * * Data Mining: Concepts and Techniques * Locally Weighted Regression Construct an explicit approximation to f over a local region surrounding query instance xq. Locally weighted linear regression: The target function f is approximated near xq using the linear function: minimize the squared error: distance-decreasing weight K the gradient descent training rule: In most cases, the target function is approximated by a constant, linear, or quadratic function. * Data Mining: Concepts and Techniques * Prediction: Numerical Data * Data Mining: Concepts and Techniques * Prediction: Categorical Data * Data Mining: Concepts and Techniques * Chapter 7. Classification and Prediction What is classification? What is prediction? Issues regarding classification and prediction Classification by decision tree induction Bayesian Classification Classification by backpropagation Classification based on concepts from association rule mining Other Classification Methods Prediction Classification accuracy Summary * Data Mining: Concepts and Techniques * Classification Accuracy: Estimating Error Rates Partition: Training-and-testing use two independent data sets, e.g., training set (2/3), test set(1/3) used for data set with large number of samples Cross-validation divide the data set into k subsamples use k-1 subsamples as training data and one sub-sample as test data k-fold cross-validation for data set with moderate size Bootstrapping (leave-one-out) for small size data * Data Mining: Concepts and Techniques * Boosting and Bagging Boosting increases classification accuracy Applicable to decision trees or Bayesian classifier Learn a series of classifiers, where each classifier in the series pays more attention to the examples misclassified by its predecessor Boosting requires only linear time and constant space * Data Mining: Concepts and Techniques * Boosting Technique (II) — Algorithm Assign every example an equal weight 1/N For t = 1, 2, …, T Do Obtain a hypothesis (class
您可能关注的文档
- 实变函数论课件3课件幻灯片.ppt
- 排除重复3笋芽儿精品课件一幻灯片.ppt
- 数据库系统课件第二章关系数据库幻灯片.ppt
- 实变函数论课件4课件幻灯片.ppt
- 排除重复3桃花心木精品课件一幻灯片.ppt
- 实变函数论课件5课件幻灯片.ppt
- 排除重复3小池塘幻灯片.ppt
- 实变函数论课件6课件幻灯片.ppt
- 排除重复3烟台的海幻灯片.ppt
- 实变函数论课件7课件幻灯片.ppt
- 2023年其它网络系统专用设备项目评估报告.docx
- 有机无机杂化材料在光电显示领域中的新型器件结构设计与制备研究资料集.docx
- 河流水质在线监测传感器多参数检测与数据处理技术资料集.docx
- 区块链赋能下的跨境支付系统性能优化与成本控制研究资料集.docx
- 互联网与社会发展-互联网对社会的影响与发展.pptx
- AI驱动下的医药行业创新与发展潜力.docx
- 2023年具有独立功能电气设备及装置项目可行性评估方案.docx
- 2023年具有独立功能电气设备及装置项目可行性研究方案.docx
- 汽车未来引领者-新能源与智能驾驶的双重突破.pptx
- 天然产物抗阿尔茨海默病药物研发创新思维与方法论资料集.docx
文档评论(0)